Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Langmuir ; 40(15): 7982-7991, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569012

RESUMEN

In this study, we explored an innovative application of heat-assisted solution electrospinning, a technique that significantly advances the control of phase separation in polystyrene (PS) fibers. Our experimental approach involved the use of direct heating and a convection air sheath applied through a coaxial needle, focusing on solvents with varying vapor pressures. This method enabled a detailed investigation into how solvent evaporation rates affect the morphology of the electrospun fibers. SEM and AFM measurements revealed that the application of direct heating and a heated air sheath offered precise control over the fiber morphology, significantly influencing both the surface and internal structure of the fibers. Additionally, we observed notable changes in fiber diameter, indicating that heat-assisted electrospinning can be effectively utilized to tailor fiber dimensions according to specific application requirements. Moreover, our research demonstrated the critical role of solvent properties, particularly vapor pressure, in determining the final characteristics of the electrospun fibers. By comparing fibers produced with different solvents, we gained insights into the complex interplay between solvent dynamics and heat application in fiber formation. The implications of these findings are far-reaching, offering new possibilities for the fabrication of nanofibers with customized properties. Furthermore, this could have profound impacts on various applications, from biomedical to environmental, where specific fiber characteristics are crucial. This study not only contributes to the understanding of phase separation in electrospinning but also opens avenues for further research on the optimization of fiber properties for diverse industrial and scientific applications.

2.
Langmuir ; 39(31): 10881-10891, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390484

RESUMEN

In this study, we explored the influence of molecular interactions and solvent evaporation kinetics on the formation of porous structures in electrospun nanofibers, utilizing polyacrylonitrile (PAN) and polystyrene (PS) as model polymers. The coaxial electrospinning technique was employed to control the injection of water and ethylene glycol (EG) as nonsolvents into polymer jets, demonstrating its potential as a powerful tool for manipulating phase separation processes and fabricating nanofibers with tailored properties. Our findings highlighted the critical role of intermolecular interactions between nonsolvents and polymers in governing phase separation and porous structure formation. Additionally, we observed that the size and polarity of nonsolvent molecules affected the phase separation process. Furthermore, solvent evaporation kinetics were found to significantly impact phase separation, as evidenced by less distinct porous structures when using a rapidly evaporating solvent like tetrahydrofuran (THF) instead of dimethylformamide (DMF). This work offers valuable insights into the intricate relationship between molecular interactions and solvent evaporation kinetics during electrospinning, providing guidance for researchers developing porous nanofibers with specific characteristics for various applications, including filtration, drug delivery, and tissue engineering.

3.
Proc Natl Acad Sci U S A ; 117(25): 14602-14608, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522869

RESUMEN

Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk-elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biomiméticos/química , Biónica/métodos , Celulosa/química , Elastina/química , Elastina/genética , Hidrogeles/química , Conformación Molecular , Nanofibras/química , Ingeniería de Proteínas , Robótica/métodos , Seda/química , Seda/genética
4.
Plant J ; 105(6): 1665-1676, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33346910

RESUMEN

Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.


Asunto(s)
Cromosomas de las Plantas/genética , Secale/genética , Triticum/genética , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Intercambio Genético/genética , Fitomejoramiento
5.
Small ; 18(20): e2201045, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429099

RESUMEN

The interface plays a pivotal role in stabilizing metal anode. Extensive studies have been made but systematic research is lacking. In this study, preliminary studies are conducted to explore the prime conditions of interfacial modification to approach the practical requirements. Critical factors including reaction kinetics, transport rate, and modulus are identified to affect the Zn anode morphology significantly. The fundamental principle to enhance the Zn anode stability is systematically studied using the TEMPO-oxidized cellulose nanofiber (TOCNF) coating layer with thin a separator. Its advantageous mechanical properties buffer the huge volume variation. The existence of hydrophilic TOCNF in the Zn anode interface enhances the mass transfer process and alters the Zn2+ distribution with a record high double-layer capacitance (390 uF cm-2 ). With the synergetic effect, the modified Zn anode works stably under 5 mA cm-2 with a thin nonwoven paper as the separator (thickness 113 µm). At an ultra-high current density of 10 mA cm-2 , this coated anode cycles for more than 300 h. This strategy shows an immense potential to drive the Zn anode forward toward practical applications.


Asunto(s)
Suministros de Energía Eléctrica , Nanofibras , Electrodos , Zinc
6.
BMC Plant Biol ; 20(1): 97, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131739

RESUMEN

BACKGROUND: In contrast to most animal species, polyploid plant species are quite tolerant of aneuploidy. Here, the global transcriptome of four aneuploid derivatives of a synthetic hexaploid wheat line was acquired, with the goal of characterizing the relationship between gene copy number and transcript abundance. RESULTS: For most of the genes mapped to the chromosome involved in aneuploidy, the abundance of transcripts reflected the gene copy number. Aneuploidy had a greater effect on the strength of transcription of genes mapped to the chromosome present in a noneuploid dose than on that of genes mapped elsewhere in the genome. Overall, changing the copy number of one member of a homeologous set had little effect on the abundance of transcripts generated from the set of homeologs as a whole, consistent with the tolerance of aneuploidy exhibited by allopolyploids, whether in the form of a chromosomal deficit (monosomy) or chromosomal excess (trisomy). CONCLUSIONS: Our findings shed new light on the genetic regulation of homeoallele transcription and contribute to a deeper understanding of allopolyploid genome evolution, with implications for the breeding of polyploid crops.


Asunto(s)
Aneuploidia , Poliploidía , Transcriptoma , Triticum/genética , Dosificación de Gen
7.
Theor Appl Genet ; 132(8): 2285-2294, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31049633

RESUMEN

KEY MESSAGE: Introgressing one-eighth of synthetic hexaploid wheat genome through a double top-cross plus a two-phase selection is an effective strategy to develop high-yielding wheat varieties. The continued expansion of the world population and the likely onset of climate change combine to form a major crop breeding challenge. Genetic advances in most crop species to date have largely relied on recombination and reassortment within a relatively narrow gene pool. Here, we demonstrate an efficient wheat breeding strategy for improving yield potentials by introgression of multiple genomic regions of de novo synthesized wheat. The method relies on an initial double top-cross (DTC), in which one parent is synthetic hexaploid wheat (SHW), followed by a two-phase selection procedure. A genotypic analysis of three varieties (Shumai 580, Shumai 969 and Shumai 830) released from this program showed that each harbors a unique set of genomic regions inherited from the SHW parent. The first two varieties were generated from very small populations, whereas the third used a more conventional scale of selection since one of bread wheat parents was a pre-breeding material. The three varieties had remarkably enhanced yield potential compared to those developed by conventional breeding. A widely accepted consensus among crop breeders holds that introducing unadapted germplasm, such as landraces, as parents into a breeding program is a risky proposition, since the size of the breeding population required to overcome linkage drag becomes too daunting. However, the success of the proposed DTC strategy has demonstrated that novel variation harbored by SHWs can be accessed in a straightforward, effective manner. The strategy is in principle generalizable to any allopolyploid crop species where the identity of the progenitor species is known.


Asunto(s)
Pan , Pool de Genes , Fitomejoramiento , Poliploidía , Triticum/genética , Alelos , Cruzamientos Genéticos , Genes de Plantas , Genotipo , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
8.
Chem Soc Rev ; 47(8): 2837-2872, 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29561005

RESUMEN

Nanocellulose has emerged as a sustainable and promising nanomaterial owing to its unique structures, superb properties, and natural abundance. Here, we present a comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage. We begin with a brief introduction of the structural features of cellulose nanofibers within the cell walls of cellulose resources. We then focus on a variety of processes that have been explored to fabricate nanocellulose with various structures and surface chemical properties. Next, we highlight a number of energy storage systems that utilize nanocellulose-derived materials, including supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries. In this section, the main focus is on the integration of nanocellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nanocellulose to carbon materials and their functionalization by activation, heteroatom-doping, and hybridization with other active materials. Finally, we present our perspectives on several issues that need further exploration in this active research field in the future.

9.
Prog Polym Sci ; 85: 1-56, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31915410

RESUMEN

Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.

10.
Angew Chem Int Ed Engl ; 57(24): 7085-7090, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29687551

RESUMEN

Carbon aerogels with 3D networks of interconnected nanometer-sized particles exhibit fascinating physical properties and show great application potential. Efficient and sustainable methods are required to produce high-performance carbon aerogels on a large scale to boost their practical applications. An economical and sustainable method is now developed for the synthesis of ultrathin carbon nanofiber (CNF) aerogels from the wood-based nanofibrillated cellulose (NFC) aerogels via a catalytic pyrolysis process, which guarantees high carbon residual and well maintenance of the nanofibrous morphology during thermal decomposition of the NFC aerogels. The wood-derived CNF aerogels exhibit excellent electrical conductivity, a large surface area, and potential as a binder-free electrode material for supercapacitors. The results suggest great promise in developing new families of carbon aerogels based on the controlled pyrolysis of economical and sustainable nanostructured precursors.

11.
Adv Mater ; : e2403876, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739951

RESUMEN

Sorption-based atmospheric water harvesting is an attractive technology for exploiting unconventional water sources. A critical challenge is how to facilitate fast and continuous collection of potable water from air. Here, a bio-based gel (cellulose/alginate/lignin gel, CAL gel), resulting from the integration of a whole biomass-derived polymer network with lithium chloride is reported. A fast adsorption/desorption kinetics, with a water capture rate of 1.74 kg kg-1 h-1 at 30% relative humidity and a desorption rate of 1.98 kg kg-1 h-1, is simultaneously realized in one piece of CAL gel, because of its strong hygroscopicity, hydrophilic network, abundant water transport channels, photothermal conversion ability, and ≈200-µm-thick self-supporting bulky structure caused by multicomponent synergy. A solar-driven, drum-type, tunable, and portable harvester is designed that can harvest atmospheric water within a brief time. Under outdoor conditions, the harvester with CAL gels operates 36 switches (180°) per day realizes a water yield of 8.96 kg kggel -1 (18.87 g kgdevice -1). This portable harvester highlights the potential for fast and scalable atmospheric water harvesting in extreme environments.

12.
Adv Mater ; 36(1): e2306653, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37696052

RESUMEN

Hygroscopic salt-based composite sorbents are considered ideal candidates for solar-driven atmospheric water harvesting. The primary challenge for the sorbents lies in exposing more hygroscopically active sites to the surrounding air while preventing salt leakage. Herein, a hierarchically structured scaffold is constructed by integrating cellulose nanofiber and lithium chloride (LiCl) as building blocks through 3D printing combined with freeze-drying. The milli/micrometer multiscale pores can effectively confine LiCl and simultaneously provide a more exposed active area for water sorption and release, accelerating both water sorption and evaporation kinetics of the 3D printed structure. Compared to a conventional freeze-dried aerogel, the 3D printed scaffold exhibits a water sorption rate that is increased 1.6-fold, along with a more than 2.4-fold greater water release rate. An array of bilayer scaffolds is demonstrated, which can produce 0.63 g g-1 day-1 of water outdoors under natural sunlight. This article provides a sustainable strategy for collecting freshwater from the atmosphere.

13.
Adv Mater ; 36(12): e2209479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36652538

RESUMEN

The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.

14.
Hepatol Int ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767772

RESUMEN

BACKGROUND: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA), as a rare primary hepatic tumor, is challenging to accurately assess in terms of the clinical outcomes and prognostic risk factors in patients. This study aimed to clarify the function of tertiary lymphoid structure (TLS) status in predicting the outcome of cHCC-CCA and to preliminarily explore the possible mechanism of TLS formation. METHODS: The TLSs, with different spatial distributions and densities, of 137 cHCC-CCA were quantified, and their association with prognosis was assessed by Cox regression and Kaplan-Meier analyses. We further validated TLS possible efficacy in predicting immunotherapy responsiveness in two cHCC-CCA case reports. TLS composition and its relationship to CXCL12 expression were analysed by fluorescent multiplex immunohistochemistry. RESULTS: A high intratumoural TLS score was correlated with prolonged survival, whereas a high TLS density in adjacent tissue indicated a worse prognosis in cHCC-CCA. Mature TLSs were related to favorable outcomes and showed more CD8 + T cells infiltrating tumor tissues. We further divided the cHCC-CCA patients into four immune grades by combining the peri-TLS and intra-TLS, and these grades were an independent prognostic factor. In addition, our reported cases suggested a potential value of TLS in predicting immunotherapy response in cHCC-CCA patients. Our findings suggested that CXCL12 expression in cHCC-CCA tissue was significantly correlated with TLS presence. CONCLUSION: The spatial distribution and density of TLSs revealing the characteristics of the cHCC-CCA immune microenvironment, significantly correlated with prognosis and provided a potential immunotherapy response biomarker for cHCC-CCA.

15.
Nat Commun ; 15(1): 4675, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824139

RESUMEN

H2O dissociation plays a crucial role in solar-driven catalytic CO2 methanation, demanding high temperature even for solar-to-chemical conversion efficiencies <1% with modest product selectivity. Herein, we report an oxygen-vacancy (Vo) rich CeO2 catalyst with single-atom Ni anchored around its surface Vo sites by replacing Ce atoms to promote H2O dissociation and achieve effective photothermal CO2 reduction under concentrated light irradiation. The high photon flux reduces the apparent activation energy for CH4 production and prevents Vo from depletion. The defects coordinated with single-atom Ni, significantly promote the capture of charges and local phonons at the Ni d-impurity orbitals, thereby inducing more effective H2O activation. The catalyst presents a CH4 yield of 192.75 µmol/cm2/h, with a solar-to-chemical efficiency of 1.14% and a selectivity ~100%. The mechanistic insights uncovered in this study should help further the development of H2O-activating catalysts for CO2 reduction and thereby expedite the practical utilization of solar-to-chemical technologies.

16.
Nat Commun ; 14(1): 3245, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277342

RESUMEN

Producing functional soft fibers via existing spinning methods is environmentally and economically costly due to the complexity of spinning equipment, involvement of copious solvents, intensive consumption of energy, and multi-step pre-/post-spinning treatments. We report a nonsolvent vapor-induced phase separation spinning approach under ambient conditions, which resembles the native spider silk fibrillation. It is enabled by the optimal rheological properties of dopes via engineering silver-coordinated molecular chain interactions and autonomous phase transition due to the nonsolvent vapor-induced phase separation effect. Fiber fibrillation under ambient conditions using a polyacrylonitrile-silver ion dope is demonstrated, along with detailed elucidations on tuning dope spinnability through rheological analysis. The obtained fibers are mechanically soft, stretchable, and electrically conductive, benefiting from elastic molecular chain networks via silver-based coordination complexes and in-situ reduced silver nanoparticles. Particularly, these fibers can be configured as wearable electronics for self-sensing and self-powering applications. Our ambient-conditions spinning approach provides a platform to create functional soft fibers with unified mechanical and electrical properties at a two-to-three order of magnitude less energy cost under ambient conditions.

17.
Adv Mater ; 35(22): e2211437, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36843238

RESUMEN

Stimulus-responsive actuators play a vital role in the new generation of intelligent systems. However, poor mechanical performance, complicated fabrication processes, and the inability to complex deformation limit their practical applications. Herein, these challenges are overcome via designing a strong hygrothermic wood actuator with asymmetric water affinity. The actuator is readily constructed by sandwiching polypyrrole-coated wood with a Ni complex hygroscopic gel top layer for moisture absorption and a polyimide bottom layer as the water barrier. The resulting hygrothermic wood spontaneously stretches and bends itself in response to moisture and thermal/light stimulation. A robotic hand and a series of grippers made of hygrothermic wood demonstrate dexterous object-hand interactions during grasping and holding, while the reversible hygrothermic property allows the actuator to be potentially applied in fire rescue scenarios to rescue trapped objects. A combination of good mechanical properties, multi-stimulus-response, complex deformation, wide working temperature range, low manufacturing cost, and biocompatibility are simultaneously realized by one device. It is thus believed that such a strong wood actuator will open up a new avenue for building intelligent robotic hand systems.

18.
Org Lett ; 25(31): 5762-5767, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37500499

RESUMEN

An efficient and chemoselective transformation of ß-amido ynones to 3-acyl-substituted quinolones 2 and 3-H-quinolones 4 has been developed. In this reaction, ß-cyclic amido ynones can be selectively transformed into quinolones 2 in anhydrous EG via a selective C═O bond cleavage, 1,5-O migration, and C═C bond recombination process. The practical approach of this reaction renders it a viable alternative for the construction of various quinolones.

19.
ACS Sustain Chem Eng ; 11(31): 11570-11579, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37564956

RESUMEN

In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core-sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core-sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 µm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core-sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LA1.3PS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating-cooling cycles (20-60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core-sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation.

20.
ACS Sens ; 8(7): 2731-2739, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37231654

RESUMEN

Water seepage-induced geological hazards (SIGHs), including landslides, collapse, debris flow, and ground fissures, often cause substantial human mortality, economic losses, and environmental damage. However, an early warning of geological water seepage remains a significant challenge. A self-powered, cost-effective, reliable, and susceptible SIGH early warning system (SIGH-EWS) is reported herein. This system designed the all-solid, sustainable, fire retardant, and safe-to-use bio-ionotronic batteries to provide a stable power supply for Internet of Things chipsets. Furthermore, the batteries' outstanding humidity and water sensitivity allow sensing of the water seepage emergence. Integrating energy management and wireless communication systems, the SIGH-EWS realizes timely alerts for early water seepage in different water and soil environments with a time resolution in seconds. Based on these merits, the SIGH-EWS demonstrates promising application prospects for early warning of geological disasters and corresponding design strategies that can potentially guide the designs of next-generation geological hazard alarm systems.


Asunto(s)
Suelo , Movimientos del Agua , Humanos , Abastecimiento de Agua , Suministros de Energía Eléctrica , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA