Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 486: 116918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570042

RESUMEN

Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.


Asunto(s)
Analgésicos Opioides , Anticuerpos Monoclonales , Fentanilo , Hemocianinas , Fentanilo/inmunología , Animales , Analgésicos Opioides/farmacología , Anticuerpos Monoclonales/farmacología , Ratones , Hemocianinas/inmunología , Humanos , Ratones Endogámicos BALB C , Masculino , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/inmunología , Distribución Tisular , Femenino , Haptenos/inmunología
2.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812197

RESUMEN

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas , Resonancia por Plasmón de Superficie , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas/métodos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Control de Calidad , Humanos , Cromatografía Líquida con Espectrometría de Masas
3.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5271-5277, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38114116

RESUMEN

This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Daño por Reperfusión , Ratas , Animales , Células PC12 , Proteínas Proto-Oncogénicas c-akt/genética , Glucosa/uso terapéutico , Oxígeno/metabolismo , Beclina-1/genética , Beclina-1/farmacología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Apoptosis , Daño por Reperfusión/tratamiento farmacológico
4.
Angew Chem Int Ed Engl ; 62(22): e202303795, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36995169

RESUMEN

Enantioenriched α-tertiary-α-aminoacid and α-chiral-ß-aminoacid derivatives play an important role in biological science and pharmaceutical chemistry. Thus, the development of methods for their synthesis is highly valuable and yet remains challenging. Herein, an unprecedented catalyst-controlled regiodivergent and enantioselective formal hydroamination of N,N-disubstituted acrylamides with aminating agents has been developed, accessing enantioenriched α-tertiary-α-aminolactam and α-chiral-ß-aminoamide derivatives. Sterically-disfavored and electronically-disfavored enantioselective hydroamination of electron-deficient alkenes have been successfully tuned using different transition metals and chiral ligands. Notably, extremely hindered aliphatic α-tertiary-α-aminolactam derivatives were synthesized by Cu-H catalyzed asymmetric C-N bond forming with tertiary alkyl species. Enantioenriched α-chiral-ß-aminoamide derivatives have been accessed by Ni-H catalyzed anti-Markovnikov-selective formal hydroaminations of alkenes. This set of reactions tolerates a wide range of functional groups to deliver diverse α-tertiary-α-aminolactam and α-chiral-ß-aminoamide derivatives in good yields with high levels of enantioselectivity.

5.
Exp Cell Res ; 408(2): 112858, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600901

RESUMEN

In contrast to conventional cancer treatment, in personalized cancer medicine each patient receives a specific treatment. The response to therapy, clinical outcomes, and tumor behavior such as metastases, tumor progression, carcinogenesis can be significantly affected by the heterogeneous tumor microenvironment (TME) and interpersonal differences. Therefore, using native tumor microenvironment mimicking models is necessary to improving personalized cancer therapy. Both in vitro 2D cell culture and in vivo animal models poorly recapitulate the heterogeneous tumor (immune) microenvironments of native tumors. The development of 3D culture models, native tumor microenvironment mimicking models, made it possible to evaluate the chemoresistance of tumor tissue and the functionality of drugs in the presence of cell-extracellular matrix and cell-cell interactions in a 3D construction. Various personalized tumor models have been designed to preserving the native tumor microenvironment, including patient-derived tumor xenografts and organoid culture strategies. In this review, we will discuss the patient-derived organoids as a native tumor microenvironment mimicking model in personalized cancer therapy. In addition, we will also review the potential and the limitations of organoid culture systems for predicting patient outcomes and preclinical drug screening. Finally, we will discuss immunotherapy drug screening in tumor organoids by using microfluidic technology.


Asunto(s)
Matriz Extracelular/genética , Neoplasias/terapia , Organoides/inmunología , Microambiente Tumoral/genética , Técnicas de Cultivo de Célula , Matriz Extracelular/inmunología , Humanos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/patología , Medicina de Precisión , Microambiente Tumoral/inmunología
6.
J Cell Mol Med ; 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34033245

RESUMEN

A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.

7.
Mol Cell Biochem ; 476(12): 4191-4203, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34324119

RESUMEN

Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive nature and late identification of pancreatic cancer, combined with the restrictions of existing chemotherapeutics, present the mandatory need for the advancement of novel treatment systems. Ongoing reports have shown an important role of microRNAs (miRNAs) in the initiation, migration, and metastasis of malignancies. Besides, abnormal transcriptional levels of miRNAs have regularly been related with etiopathogenesis of pancreatic malignancy, underlining the conceivable utilization of miRNAs in the management of pancreatic disease patients. In this review article, we give a concise outline of molecular pathways involved in etiopathogenesis of pancreatic cancer patients as well as miRNA implications in pancreatic cancer patients. Ensuing sections describe the involvement of miRNAs in the diagnosis, prognosis, and therapy of pancreatic cancer patients. The involvement of miRNAs in the chemoresistance of pancreatic cancers was also discussed. End area portrays the substance of survey with future headings.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Terapia Molecular Dirigida/métodos , Neoplasias Pancreáticas/patología , Humanos , MicroARNs/administración & dosificación , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Pronóstico , Transducción de Señal
8.
Med Sci Monit ; 26: e922854, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32529991

RESUMEN

BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most prevalent cancer worldwide, with low 5-year survival rate. To identify novel prognostic markers for OSCC and determine the immune and stromal landscape of OSCC, a risk signature for OSCC patients was constructed in this study. MATERIAL AND METHODS Immune and stromal scores for OSCC samples from the Genomic Data Commons Data Portal were computed to delineate the tumor microenvironment landscape of oral cancer based on the Estimation of STromal and Immune cells in MAlignant Tumours using Expression data algorithm. An immune score-based risk signature was constructed by combining random forest and support vector machine methods. Correlation analysis of risk signature gene expression and immune cell infiltration was conducted, and the distinguishing power of individual signature genes was evaluated by analyzing receiver operating characteristics (ROC) curves. Differentially enriched pathways between high and low risk groups were investigated via gene set variation analysis. ROC curves were plotted for signature genes to examine their ability to distinguish the recurrence and survival status of OSCC patients from GSE84846. RESULTS An immune score-related risk signature composed of ARMH1, F2RL2, AC004687.1, COL6A5, AC008750.1, RAB19, CRLF2, GRIP2, and FAM162B performed well in the prognostic stratification of OSCC patients and could effectively distinguish their survival status. Lists of pathways, including cytokine-cytokine receptor interaction and cell adhesion molecules displayed remarkable differential enrichment between high and low risk OSCC patients. CONCLUSIONS An immune score-based risk signature constructed presently may be useful to decide appropriate treatment options for individual OSCC patients.


Asunto(s)
Neoplasias de la Boca/genética , Neoplasias de la Boca/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Citocinas/genética , Citocinas/inmunología , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Linfocitos Infiltrantes de Tumor , Masculino , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Mapas de Interacción de Proteínas , ARN Mensajero , RNA-Seq , Curva ROC , Receptores de Citocinas/genética , Receptores de Citocinas/inmunología , Medición de Riesgo , Máquina de Vectores de Soporte , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
9.
Appl Opt ; 59(6): 1711-1714, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32225676

RESUMEN

In this paper, we proposed a method for producing the azimuthally polarized vector beam experimentally. The experimental setup includes two of the same axicons and one annular glass cylinder. The top angles of the two axicons were placed facing each other and the annular cylinder was set among the two axicons. One circular polarized beam was passed through the first axicon, the annular cylinder, and the second axicon in turn. When the beam incident on the inner surface of the annular cylindrical satisfied the Brewster angle, we obtained the azimuthally polarized beam for the reflected light from the annular cylindrical that only contains the $s$s-polarization component. We have derived that the azimuthally polarized vector beam has the helical phase factor with the helical phase factor of ${\exp}( - {\rm i}\varphi )$exp(-iφ) for the left circularly polarized beam incident and ${\exp}({\rm i}\varphi )$exp(iφ) for the right circularly polarized beam incident.

10.
Biotechnol Lett ; 42(1): 1-10, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31602549

RESUMEN

Microcarriers are 100- to 300-micron support matrices that permit the growth of adherent cells in bioreactor systems. They have a larger surface area to volume ratio in comparison to single cell monolayers, enabling cost-effective cell production and expansion. Microcarriers are composed of a solid matrix that must be separated from expanded cells during downstream processing stages. The detachment method is chosen on the basis of several factors like cell type, microcarrier surface chemistry, cell confluency and degree of aggregation. The development of microcarriers with a range of physiochemical properties permit controlled cell and protein associations that hold utility for novel therapeutics. In this review, we provide an overview of the recent advances in microcarrier cell culture technology. We also discuss its significance as an ex vivo research tool and the therapeutic potential of newly designed microcarrier systems in vivo.


Asunto(s)
Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Microesferas , Reactores Biológicos , Biotecnología/tendencias , Técnicas de Cultivo de Célula/tendencias
11.
Appl Opt ; 58(23): 6325-6328, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31503777

RESUMEN

In this paper, we realize the generation of propagation-invariant vector beams with square array by use of a 2D binary phase mask and pentagonal prism in a typical Mach-Zehnder optical system. The binary phase mask set in the optical system is perpendicular to the optical axis, and its periodic orientation is 45° relative to the horizontal and vertical directions. One polarizer was used to produce the linearly polarized beam with the angle of 45° relative to the horizontal and vertical directions. One mirror in the Mach-Zehnder optical system was replaced by a pentagonal prism, as the light will be reflected twice inside the pentagonal prism. The intensity distribution of the two branches with the mirror and pentagonal prism have mirror symmetry, and the output optical field of the two branches has an orthogonal polarization state. By adjusting the position of the phase plate accordingly, the total optical field of the two branches can form a vector beam with a square array. The experimental results coincide with the simulation results very well and demonstrate the feasibility of this method.

12.
Biotechnol Lett ; 41(6-7): 641-650, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30993481

RESUMEN

Cancer is a complex multifactorial disease for which many promising therapeutic strategies such as immunotherapy are emerging. Malignant cells frequently express aberrant cell surface carbohydrates, which differentiate them from normal "healthy" cells. This characteristic presents a window for the development of synthetic carbohydrate antigen-based cancer vaccines which can be recognized by the immune system and can bring about T cell-dependent immune responses. Antibodies generated against the carbohydrate antigens partake in the inactivation of carbohydrate-decorated cancer cells, by slowing down tumor cell growth and inducing cancer cell apoptosis. Novel synthetic strategies for carbohydrate antigens have led to several synthetic cancer vaccine candidates. In the present review, we describe the latest progress in carbohydrate-based cancer vaccines and their clinical evaluation in various cancers.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/inmunología , Vacunas contra el Cáncer/inmunología , Carbohidratos/inmunología , Descubrimiento de Drogas/tendencias , Neoplasias/terapia , Vacunas contra el Cáncer/administración & dosificación , Carbohidratos/administración & dosificación , Humanos , Inmunidad Celular , Inmunidad Humoral
13.
Molecules ; 23(4)2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29671816

RESUMEN

Thymus quinquecostatus Celak is a species of thyme in China and it used as condiment and herbal medicine for a long time. To set up the quality evaluation of T. quinquecostatus, the response surface methodology (RSM) based on its 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was introduced to optimize the extraction condition, and the main indicator components were found through an UPLC-LTQ-Orbitrap MSn method. The ethanol concentration, solid-liquid ratio, and extraction time on optimum conditions were 42.32%, 1:17.51, and 1.8 h, respectively. 35 components having 12 phenolic acids and 23 flavonoids were unambiguously or tentatively identified both positive and negative modes to employ for the comprehensive analysis in the optimum anti-oxidative part. A simple, reliable, and sensitive HPLC method was performed for the multi-component quantitative analysis of T. quinquecostatus using six characteristic and principal phenolic acids and flavonoids as reference compounds. Furthermore, the chemometrics methods (principal components analysis (PCA) and hierarchical clustering analysis (HCA)) appraised the growing areas and harvest time of this herb closely relative to the quality-controlled. This study provided full-scale qualitative and quantitative information for the quality evaluation of T. quinquecostatus, which would be a valuable reference for further study and development of this herb and related laid the foundation of further study on its pharmacological efficacy.


Asunto(s)
Plantas Medicinales/metabolismo , Thymus (Planta)/metabolismo , Cromatografía Líquida de Alta Presión , Estrés Oxidativo , Plantas Medicinales/química , Análisis de Componente Principal , Thymus (Planta)/química
14.
Clin Oral Implants Res ; 28(8): 911-919, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27283240

RESUMEN

OBJECTIVES: To evaluate the effect of strontium-oxide layer on new bone formation and osseointegration of sandblasted large-grit double-acid-etched (SLA) implant. MATERIAL AND METHODS: Strontium-oxide layer on the SLA surface was produced by hydrothermal treatment using a Sr-containing solution. The surface topographies, roughness, hardness values, chemical elements and ionic release of SLA and the strontium-containing SLA (Sr-SLA) surface were measured by special instruments separately. Sixty-four SLA and Sr-SLA implants were inserted into the proximal tibiae and femoral condyles of sixteen non-osteoporotic New Zealand white rabbits. The biological effects were evaluated by removal torque (RTQ) testing and histomorphometric analysis after 3 and 6 weeks of implantation. RESULTS: The surface characteristics showed Sr-SLA surfaces with dotted nanostructures can release appropriate amount of strontium ions into surrounding tissue till 14 days. In vivo, the Sr-SLA implants presented significantly higher RTQ than SLA implants at 3 and 6 weeks (P < 0.05). The Sr-SLA implants presented higher bone-to-implant contact (BIC) than SLA implants in cortical bone at 3 and 6 weeks (P < 0.05). The bone area was slightly higher for the Sr-SLA implants at 3 and 6 weeks (P > 0.05). CONCLUSIONS: The strontium-oxide layer on the SLA surface has the potential to improve implant osseointegration in non-osteoporotic rabbits.


Asunto(s)
Implantación Dental Endoósea/métodos , Oseointegración/efectos de los fármacos , Estroncio , Titanio , Animales , Interfase Hueso-Implante , Implantes Dentales , Masculino , Conejos , Propiedades de Superficie
15.
Artículo en Inglés | MEDLINE | ID: mdl-38594991

RESUMEN

Background Atopic dermatitis (AD) is a common skin condition that occurs due to a combined effect of immune dysregulation, skin barrier dysfunction, changes in the cutaneous microbiome, and genetic factors. Recent data from both clinical trials and real-world studies indicate that dupilumab, a biological agent that inhibits interleukin 4 receptor-α is an effective drug in the treatment of AD, which further suggests the important role of IL-13 and IL-4 in the pathogenesis of AD. Objectives To assess the association between gene polymorphisms of IL-13, IL-13 receptor, IL-4, and IL-4 receptor and susceptibility to AD. Methods The single nucleotide polymorphisms (SNPs) of the above-mentioned genes were detected by single base extension (SNaPshot) assay. The association between these SNPs and AD risk was analysed using SPSS software. Results Two hundred and seventy-one subjects including 130 patients with AD and 141 healthy controls were enrolled. There were statistical differences between AD patients and controls in genotype distribution at rs2265753, rs6646259, and rs2254672 of the IL-13 receptor gene (P all < 0.001). Subjects with CG at rs2265753, AG at rs6646259 and TG at rs2254672 had increased risks for AD (P all < 0.001), and subjects with GG at rs2265753, rs6646259, and rs2254672 had reduced risks for AD (P all < 0.001). Limitation This was a single-centre and single-race study, with a relatively small sample size. Conclusions Findings from this study show that rs2265753, rs6646259 and rs2254672 of the IL-13 receptor gene are associated with susceptibility to AD.

16.
Sci Adv ; 10(14): eadn1272, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578992

RESUMEN

Direct conversion of hydrocarbons into amines represents an important and atom-economic goal in chemistry for decades. However, intermolecular cross-coupling of terminal alkenes with amines to form branched amines remains extremely challenging. Here, a visible-light and Co-dual catalyzed direct allylic C─H amination of alkenes with free amines to afford branched amines has been developed. Notably, challenging aliphatic amines with strong coordinating effect can be directly used as C─N coupling partner to couple with allylic C─H bond to form advanced amines with molecular complexity. Moreover, the reaction proceeds with exclusive regio- and chemoselectivity at more steric hinder position to deliver primary, secondary, and tertiary aliphatic amines with diverse substitution patterns that are difficult to access otherwise.

17.
ACS Pharmacol Transl Sci ; 7(2): 421-431, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38357273

RESUMEN

In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1ß, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-ß1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.

18.
J Med Chem ; 67(12): 10168-10189, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38855903

RESUMEN

The NLRP3 inflammasome is a critical component of the innate immune system. The persistent abnormal activation of the NLRP3 inflammasome is implicated in numerous human diseases. Herein, sulfonamide-substituted tetrahydroquinoline derivative S-9 was identified as the most promising NLRP3 inhibitor, without obvious cytotoxicity. In vitro, S-9 inhibited the priming and activation stages of the NLRP3 inflammasome. Incidentally, we also observed that S-9 had inhibitory effects on the NLRC4 and AIM2 inflammasomes. To elucidate the multiple anti-inflammatory activities of S-9, photoaffinity probe P-2, which contained a photoaffinity label and a functional handle, was developed for target identification by chemical proteomics. We identified PKR as a novel target of S-9 in addition to NLRP3 by target fishing. Furthermore, S-9 exhibited a significant anti-neuroinflammatory effect in vivo. In summary, our findings show that S-9 is a promising lead compound targeting both PKR and NLRP3 that could emerge as a molecular tool for treating inflammasome-related diseases.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Quinolinas , Sulfonamidas , eIF-2 Quinasa , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Quinolinas/farmacología , Quinolinas/química , Quinolinas/síntesis química , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Relación Estructura-Actividad
19.
Neuroscience ; 551: 196-204, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810690

RESUMEN

Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are a common phenomenon and cause pathological impairment in several diseases, such as Alzheimer's disease (AD), epilepsy and schizophrenia. However, the specific pathological changes and mechanisms of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.

20.
Front Bioeng Biotechnol ; 12: 1363742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558788

RESUMEN

In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA