Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(21): e2309931, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102094

RESUMEN

Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m-3), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change. Moreover, the ionogel sensor exhibits an ultra-fast response time (60 ms) comparable to skin, an incredibly low detection limit (1 kPa), and an exceptionally wide detection range (1 kPa-1 MPa). The exceptional gradient ionogel material holds tremendous promise for applications in the field of smart sensors, presenting a distinct strategy for fabricating flexible gradient materials.

2.
Opt Lett ; 49(9): 2413-2416, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691732

RESUMEN

A novel, to the best of our knowledge, cross-spectral optical computing imaging experiment has been achieved through a single exposure of a charge-coupled device. The experimental setup integrates single-pixel imaging (SPI) with ghost imaging (GI) through a photoelectric conversion circuit and a synchronous modulation system. The experimental process involves modulation in one wavelength band (in SPI) and demodulation using the GI algorithm in another. Significantly, our approach utilizes optical computing demodulation, a departure from the conventional electronic demodulation in GI (SPI), which involves the convolution between the bucket optical signals and the modulated patterns on the digital micromirror device. A proof-of-concept cross-band imaging experiment from near-infrared to visible light has been carried out. The results highlight the system's ability to capture images at up to 20 frames per second using near-infrared illumination, which are then reconstructed in the visible light spectrum. This success not only validates the feasibility of our approach but also expands the potential applications in the SPI or GI fields, particularly in scenarios where two-dimensional detector arrays are either unavailable or prohibitively expensive in certain electromagnetic spectra such as x-ray and terahertz.

3.
Langmuir ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320983

RESUMEN

Efficient storage media are crucial for practical applications of hydrogen, which is the most promising clean energy resource. In addition to possessing a highly reversible gravimetric capacity, the stability and superlight mass of potential storage media should not be underestimated. In this study, we exploit the light mass and unique puckered structure of penta-BCNs to design Li-decorated penta-BCNs for hydrogen storage via a series of first-principles calculations. Our results reveal that Li atoms can form stable chemical complexes with the surface of penta-BCNs with an average binding energy of -2.21 eV without causing deformation. Each Li@penta-BCN unit can physically adsorb up to 27H2 molecules, and the highest hydrogen storage capacity can reach 7.44 wt %, with an average adsorption energy of -0.16 eV/H2, surpassing the target value of 5.5 wt % set by the U.S. Department of Energy. Further elaborate analysis of the electronic structure shows the polarization enhancement mechanism, which is caused by charge transfer from Li atoms to the penta-BCN surface. Our results indicate that Li-decorated penta-BCN could be a promising hydrogen storage material for further application and inspire the theoretical or experimental design of novel materials for clean energy.

4.
Langmuir ; 40(6): 3095-3104, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38299976

RESUMEN

Two-dimensional graphenelike material, hexagonal boron phosphide (h-BP), is a promising candidate for electronic and optoelectronic devices because of its suitable band gap and high carrier mobility. Especially from the ultrahigh lattice thermal conductivity (κl), it exhibits great potential to solve the challenges of future thermal management applications. Here, the excellent lattice thermal transport properties of the h-BP monolayer are systematically analyzed at the atomic level based on the first-principles method. The results show that the ultrahigh κl value of the h-BP monolayer is attributed to its high phonon group velocity and long phonon lifetime and the strong phonon hydrodynamic effect. We further explore the influence of the tensile strain on the thermal transport properties of the h-BP monolayer. As the strain increases from 0 to 8%, the κl value shows a trend of first increasing and then decreasing due to the coeffect of strain-driven changes for phonon harmonicity and anharmonicity. Under a strain of 6%, the κl value of the h-BP monolayer is as high as 795 W/mK at 300 K, which is about 2.22 times larger than that of 357 W/mK without strain. Such a significant increase in the κl value is mainly due to the increased phonon group velocity and decreased Grüneisen parameter caused by strain. This work is helpful to understand the critical role of tensile strain in lattice thermal transport of two-dimensional graphenelike materials. It is conducive to promoting the thermal management application of the h-BP monolayer.

5.
Langmuir ; 40(22): 11582-11589, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38785077

RESUMEN

Graphene-like materials in two dimensions hold great promise for energy storage and transformation applications owing to their distinctive features, such as lightweight composition, porous geometry, etc. Among these materials, a recently discovered unit known as g-B5N3 has demonstrated high performance in energy storage and transformation. In our efforts to enhance its applicability in adsorbing energy gases, we propose a novel composite structure by decorating Li atoms on the surface of pristine g-B5N3. The electronic properties of this composite have been comprehensively investigated using a first-principles method. Our findings reveal that the added Li atoms can be securely anchored on the g-B5N3 with an adsorption energy of -3.01 eV. Furthermore, the Li atom transfers its partial 2s electrons to the g-B5N3, exhibiting considerable electropositivity. These metallic sites effectively polarize the adsorbed H2 molecules, enhancing the mutual electrostatic interactions. Each primitive cell of Li-doped g-B5N3 can adsorb up to 13 H2 molecules, resulting in a storage capacity up to 6.3 wt %. This capacity significantly surpasses the goal of 4.5 wt % set by the U.S. Department of Energy. Furthermore, the typical adsorption energy of -0.209 eV per molecule of H2 aligns with the energy range suitable for reversible hydrogen storage. This study underscores the potential of Li-doped g-B5N3 for energy gas adsorption, shedding light on further advancements in this field.

6.
Langmuir ; 40(18): 9775-9784, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38664863

RESUMEN

We obtained a new material called monolayer 1T-Ag6S2 by replacing metal atoms in 1T phase transition-metal dichalcogenide sulfides (TMDs) with octahedral Ag6 clusters. Subsequently, the thermoelectric transport properties of monolayer 1T-Ag6S2 were systematically investigated using first-principles calculations and the generalized gradient approximation (GGA-PBE) exchange correlation functional. The findings demonstrate that monolayer 1T-Ag6S2 displays characteristics of a wide-bandgap semiconductor, with a bandgap of 2.48 eV. Notably, the incorporation of Ag6 clusters disrupts the structural symmetry, effectively enhancing the electronic structure and phonon properties of the material. Due to the flat valence band near the Fermi level, the extended relaxation time of the hole results in a greater effective mass compared to the electron, leading to a significant increase in the Seebeck coefficient. Under optimal doping conditions, the power factor of monolayer 1T-Ag6S2 can achieve 14.9 mW/mK2 at 500 K. The intricate crystal structure induces phonon path bending, reduces the overall frequency of phonon vibrations (<10 THz), and causes hybridization of low-frequency optical and acoustic branches, resulting in remarkably low lattice thermal conductivity (0.20 and 0.17 W/mK along the x and y axes at 500 K, respectively). The monolayer 1T-Ag6S2 demonstrates a remarkably high figure of merit ZT of 3.14 (3.15) on the x (y) axis at 500 K, significantly higher than those of conventional TMD materials. Such excellent thermoelectric properties suggest that monolayer 1T-Ag6S2 is a promising thermoelectric (TE) material. Our work reveals the deep mechanism of cluster substitution to optimize the thermoelectric properties of materials and provides a useful reference for subsequent research.

7.
Langmuir ; 40(23): 12301-12312, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38809168

RESUMEN

The design of Janus materials offers an effective means of regulating both their physical and chemical properties, leading to their application in various fields. However, the underlying mechanism governing the modulation of the thermal transport characteristics through the construction of Janus materials remains unclear. In this work, we introduce VI-group elements into the MoSi2N4 structure, yielding two-dimensional Janus MoXSiN2 (X = S, Se, and Te) and systematically investigate their thermal transport properties based on first-principles calculation methods. Our findings reveal that the lattice thermal conductivities (κl) of MoSSiN2, MoSeSiN2, and MoTeSiN2 are 47.2, 24.3, and 40.6 W/mK at 300 K, respectively, significantly lower than that of MoSi2N4 (224 W/mK). Such low κl values mainly come from the introduction of X atoms, which enhances phonon scattering and reduces phonon vibration frequencies. In addition, MoTeSiN2 exhibits a higher κl compared to MoSeSiN2, contrary to the trend observed in most materials containing VI-group elements, where κl decreases gradually from S to Te. This anomalous behavior can be attributed to the competitive result between its lower phonon vibrational frequency and weaker phonon anharmonicity of MoTeSiN2. This work elucidates the inherent mechanism governing the modulation of thermal transport properties in Janus materials, thereby enhancing the potential application of Janus MoXSiN2 in engineering thermal management.

8.
Langmuir ; 40(15): 7992-8001, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38561994

RESUMEN

Two-dimensional (2D) materials with a pentagonal structure have many unique physical properties and great potential for applications in electrical, thermal, and optical fields. In this paper, the intrinsic thermal transport properties of 2D pentagonal CX2 (X = N, P, As, and Sb) are comparatively investigated. The results show that penta-CN2 has a high thermal conductivity (302.7 W/mK), while penta-CP2, penta-CAs2, and penta-CSb2 have relatively low thermal conductivities of 60.0, 36.9, and 11.8 W/mK, respectively. The main reason for the high thermal conductivity of penta-CN2 is that the small atomic mass of the N atom is comparable to that of the C atom, resulting in a preferable pentagonal structure with stronger bonds and thus a higher phonon group velocity. The reduction in the thermal conductivity of the other three materials is mainly due to the gradually increased atomic mass from P to Sb, which reduces the phonon group velocity. In addition, the large atomic mass difference does not result in a huge enhancement of the anharmonicity or weakening of the phonon relaxation time. The present work is expected to deepen the understanding of the thermal transport of main group V 2D pentagonal carbons and pave the way for their future applications, also, providing ideas for finding potential thermal management materials.

9.
Phys Chem Chem Phys ; 26(13): 10136-10143, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487978

RESUMEN

In the context of the global energy crisis, the development of high-performance heat transport devices within nano scales has become increasingly important. Theoretical discovery and evaluation of novel structures with high performance in thermal conductivity by affordable calculations could provide significant instructions for experimental studies focusing on thermoelectric device development. For 2-dimensional (2D) functional materials, their heat transport efficiency is correlated with their electronic properties and structural features. In this study, we computationally investigated the heat transport within Janus XClO (X = Cr, Ir); its structural and electronic properties were well solved by first-principles calculations. Furthermore, to evaluate thermodynamics stability and applicability, ab initio molecular dynamics (AIMD) simulations are conducted. Through a benchmarking study upon these XClO monolayers with different compositions, we noticed that their heat transport efficiency is associated with the percentage of doped magnetic atoms. The theoretical insights provided by this study are highly instructive for future experimental studies focusing on thermal device development.

10.
Phys Chem Chem Phys ; 26(7): 6256-6264, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305726

RESUMEN

Finding materials with suitable thermal conductivity (κ) is crucial for improving energy efficiency, reducing carbon emissions, and achieving sustainability. Atomic substitution and structural adjustments are commonly used methods. By comparing the κ of two different structures of two-dimensional (2D) IIIA-nitrides and their corresponding carbides, we explored whether atomic substitution has the same impact on κ in different structures. All eight materials exhibit normal temperature dependence, with κ decreasing as the temperature rises. Both structures are single atomic layers of 2D materials, forming M-N bonds, with the difference being that H-MN consists of hexagonal rings, while T-MN consists of tetragonal and octagonal rings. 2D IIIA-nitrides provide a good illustration of the impact of atomic substitution and structure on κ. On a logarithmic scale of κ, it approximates two parallel lines, indicating that different structures exhibit similar trends of κ reduction under the same conditions of atomic substitution. We analyzed the mechanisms behind the decreasing trend in κ from a phonon mode perspective. The main reason for the decrease in κ is that heavier atoms lower lattice vibrations, reducing phonon frequencies. Electronegativity increases, altering bonding characteristics and increasing anharmonicity. Reduced symmetry in complex structures decreases phonon group velocities and enhances phonon anharmonicity, leading to decreased phonon lifetimes. It's noteworthy that we found that atomic substitution and structure significantly affect hydrodynamic phonon transport as well. Both complex structures and atomic substitution simultaneously reduce the effects of hydrodynamic phonon transport. By comparing the impact of κ on two different structures of 2D IIIA-nitrides and their corresponding carbides, we have deepened our understanding of phonon transport in 2D materials. Heavier atomic substitution and more complex structures result in reduced κ and decreased hydrodynamic phonon transport effects. This research is likely to have a significant impact on the study of micro- and nanoscale heat transfer, including the design of materials with specific heat transfer properties for future applications.

11.
Phys Chem Chem Phys ; 25(46): 31781-31790, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37965932

RESUMEN

Thermal conductivity (κ, which consists of electronic thermal conductivity κe and lattice thermal conductivity κl), as an essential parameter in thermal management applications, is a critical physical quantity to measure the heat transfer performance of materials. To seek low-κ materials for heat-related applications, such as thermoelectric materials and thermal barrier coatings. In this study, based on a complex cluster design, we report a new class of two-dimensional (2D) transition metal dichalcogenides (TMDs): T-Au6X2 (X = S, Se, and Te) with record ultralow κl values. At room temperature, the κl values of T-Au6S2, T-Au6Se2, and T-Au6Te2 are 0.25 (0.23), 0.30 (0.21), and 0.12 (0.10) W m-1 K-1 along the x-axis (y-axis) direction, respectively, exhibiting good thermal insulation. The ultralow κl originates from strong phonon softening and suppression, especially for the phonon with frequency 0-1 THz. In addition, T-Au6Te2 holds the lowest group velocity and phonon relaxation time among the three T-Au6X2 monolayers. Our study provides an alternative approach for achieving ultralow κl through complex cluster replacement. Meanwhile, this new class of TMDs is expected to shine in thermal insulation and thermoelectricity due to their ultralow κl values.

12.
Phys Chem Chem Phys ; 25(6): 4915-4922, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722382

RESUMEN

With the rapid development of material preparation and quantum computation technologies, the discovery of superior electronic devices in the nanoscale has been widely facilitated. For materials for application in thermoelectric and thermal conductivity devices, their overall performance can be demonstrated by their inner heat transport efficiency. Thus, fundamental elucidation of the heat transport mechanism within low-dimensional materials with physical insight, is of great significance for novel electric device development. In addition, theoretical clarification can also help with the efficient control of the developed thermal devices, and furthermore, provide strategies to improve the efficiency of heat conversion. In this study, we focus on a novel carbon monolayer (net-Y) that is composed of sp2 hybridized C atoms, we systematically assess its practical applicability in electronic device design by conducting first-principles calculations. Furthermore, to obtain in-depth understanding of the factors that determine its heat transport efficiency, its mechanical and phonon spectrum related properties were also investigated. Through a comparative study with graphene, the heat transport mechanism of net-Y was successfully summarized; the methodology and theoretical findings presented in this study could provide an instructive reference for future experimental work.

13.
Phys Chem Chem Phys ; 25(36): 24332-24341, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37670676

RESUMEN

As a novel type of anisotropic two-dimensional material, extensive attention has been paid to the thermoelectric (TE) properties of FeOCl-type monolayers, such as Al2X2Se2 (X = Cl, Br, I), Sc2I2S2, and Ir2Cl2O2. Recently, theoretical works based on first-principles calculations have been powerful driving forces in field of TE research. In this work, we perform an investigation into the TE properties of Sc2X2Se2 (X = Cl, Br, I) monolayers based on density functional theory (DFT). A study on the stability, including AIMD simulation and phonon calculation, shows the stable structure of Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2 monolayers. Additionally, the electronic and thermal transport properties of Sc2X2Se2 monolayers are anisotropic along the x and y directions. Moreover, the combination of excellent Seebeck coefficient and ultralow lattice thermal conductivity contributes to outstanding ZT values, and the ZT values follow the order: Sc2I2Se2 > Sc2Br2Se2 > Sc2Cl2Se2. At 300 K, we obtained maximum ZT of 0.34, 0.77, and 1.97 for Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2, respectively, by n-type doping in the x direction. These results demonstrate that monolayer Sc2X2Se2 (X = Cl, Br, I) materials are promising thermoelectric materials, Sc2I2Se2 has more desirable properties along the x direction, and n-type doping can significantly enhance the ZT values. Our work lays a foundation for exploring the TE transport properties of FeOCl-type monolayers.

14.
Phys Chem Chem Phys ; 25(42): 29173-29181, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870382

RESUMEN

Seeking cost-effective and earth-abundant electrocatalysts with excellent activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in zinc-air batteries (ZABs) is critically important. In this work, the ORR and OER performance of the Fex cluster supported on FeN4 composite sites (FeN4@Fex) is investigated based on density functional theory. Based on the charge density difference between the Fex cluster and the FeN4 substrate, the conclusion that the decreased charge density of the chemical bond between the metal and the adsorbate can weaken the adsorption of the adsorbate can be drawn. The results of the d-band center also confirm this. Furthermore, the ORR and OER free energy change profiles show that FeN4@Fe8 exhibits the best ORR and OER activity. This is because the electronic environment regulated by the Fex cluster can improve the adsorption of intermediates, which is conducive to enhancing catalytic activity. Further considering the solution environment, the activity of FeN4@Fex with preadsorbed OH (FeN4@Fex(OH)y) was studied. It is found that FeN4@Fe8(OH)6 is still the best catalyst. This work introduces new highly active composite sites for catalyzing the ORR in an acid medium.

15.
Phys Chem Chem Phys ; 24(38): 23817-23824, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36164942

RESUMEN

In recent years, the material preparation technology has ushered into a stage of rapid development, increasingly more carbon materials are found to display superior properties, making them suitable for designing nano-scale devices. Within the applications of electronic devices, a considerable amount of consumed energy has to be converted into heat; thus the efficiency of heat transport inside these devices can largely determine their overall performance. Decent elucidations of the heat transport mechanisms within low-dimensional materials will be helpful to achieve thermal management control of the related devices and furthermore, to improve their conversion efficiency. It is well understood that the heat transport within these kinds of materials is largely associated with their structural features. In this study, we focused on a novel material, body centered cubic carbon (C14), which is composed of sp3 hybridized carbon atoms. Such a novel material displays superior electronic properties; however, its thermal properties remain to be investigated. In order to systematically evaluate the practical applicability of this novel material, first-principles calculations were employed to systematically solve its structure; furthermore, its thermal conductivity, phonon dispersion spectrum, phonon properties, Grüneisen parameters, scattering phase space and mechanical properties were all described in detail. We found that C14 performs well in heat transport; and via systematical comparison with another allotrope, diamond, its transport mechanism was further summarized. We hope the physical insights provided by this study could serve as theoretical support for nano-scale device design.

16.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408361

RESUMEN

Traffic-data recovery plays an important role in traffic prediction, congestion judgment, road network planning and other fields. Complete and accurate traffic data help to find the laws contained in the data more efficiently and effectively. However, existing methods still have problems to cope with the case when large amounts of traffic data are missed. As a generalization of vector algebra, geometric algebra has more powerful representation and processing capability for high-dimensional data. In this article, we are thus inspired to propose the geometric-algebra-based generative adversarial network to repair the missing traffic data by learning the correlation of multidimensional traffic parameters. The generator of the proposed model consists of a geometric algebra convolution module, an attention module and a deconvolution module. Global and local data mean squared errors are simultaneously applied to form the loss function of the generator. The discriminator is composed of a multichannel convolutional neural network which can continuously optimize the adversarial training process. Real traffic data from two elevated highways are used for experimental verification. Experimental results demonstrate that our method can effectively repair missing traffic data in a robust way and has better performance when compared with the state-of-the-art methods.

17.
Opt Lett ; 43(19): 4759-4762, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272733

RESUMEN

Photon bunching, a feature of classical thermal fields, has been widely exploited to implement ghost imaging. Here we show that spatial photon antibunching can be experimentally observed via low-pass filtering of the intensities of the two thermal light beams from a beamsplitter correlation system. Through suitable choice of the filter thresholds, the minimum of the measured normalized anti-correlation function, i.e., antibunching dip, can be lower than 0.2, while its full-width-at-half-maximum can be much narrower than that of the corresponding positive correlation peak. Based on this anti-correlation effect, a super-resolution negative ghost image is achieved in a lensless scheme, in which the spatial resolution can exceed the Rayleigh diffraction limit by more than a factor of two. The setup is quite simple and easy to implement, which is an advantage for practical applications.

18.
Opt Lett ; 42(24): 5290-5293, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29240195

RESUMEN

A sub-Rayleigh resolution ghost imaging experiment is performed via post-detection spatial low-pass filtering of the instantaneous intensity. A super-resolution reconstructed image has been achieved, in which the spatial resolution can exceed the Rayleigh diffraction limit by more than a factor of two. The resolution depends on the filter threshold, and the Rayleigh limit can be exceeded for a wide choice of threshold values. The setup is simple and easy to implement, which is an advantage for practical applications.

19.
Opt Lett ; 39(8): 2314-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978981

RESUMEN

An experiment demonstrating lensless ghost imaging (GI) with sunlight has been performed. A narrow spectral line is first filtered out and its intensity correlation measured. With this true thermal light source, an object consisting of two holes is imaged. The realization of lensless GI with sunlight is a step forward toward the practical application of GI with ordinary daylight as the source of illumination.

20.
J Opt Soc Am A Opt Image Sci Vis ; 31(9): 2105-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25401452

RESUMEN

A modified Nth-order correlation function is derived that can effectively remove the noise background encountered in high-order thermal light ghost imaging (GI). Based on this, the quality of the reconstructed images in an Nth-order lensless GI setup has been greatly enhanced compared to former high-order schemes for the same sampling number. In addition, the dependence of the visibility and signal-to-noise ratio for different high-order images on the sampling number has been measured and compared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA