Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; 53(7): 880-890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36563056

RESUMEN

Trichoderma reesei was induced to produce cellulase by a combination of glucose and ß-disaccharide; however, lower levels of auxiliary proteins for degrading lignocellulosic biomass were detected by iTRAQ analysis compared with cellulose as an inducer, especially cellulose induced protein 1 (CIP1). In this study, A pdc1 promoter-driven overexpression of the endogenous Trcip1 gene was observed in T. reesei Rut C30, and the Trcip1 transcription levels of the two transformants, T. reesei OE-cip1-1 and OE-cip1-2, demonstrated 31.2- and 164.6-fold increases, respectively, but there was no significant change in cellobiohydrolase, endoglucanase and filter paper activity at 48 h. The crude enzyme was then used to hydrolyze corn stover. For T. reesei OE-cip1-1 and OE-cip1-2, the hydrolysis efficiency increased by 25.0 and 28.6% with a solid loading of 5% at 2 h, respectively. Simultaneously, 85.5 and 85.2 g/L glucose were released using a cellulase cocktail at high solid loading (20%), and these glucose release rates were significantly greater than that of T. reesei Rut C30 cellulase (77.4 g/L) at 120 h. Furthermore, scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that the enhanced hydrolysis efficiency was primarily triggered by the decrease in the crystallinity of lignocellulose, and the fiber structure had varying degrees of loosening and disintegration.


Asunto(s)
Celulasa , Celulasas , Trichoderma , Celulosa/metabolismo , Zea mays/metabolismo , Glucosa/metabolismo , Celulasa/genética , Celulasa/metabolismo
2.
RSC Adv ; 12(27): 17392-17400, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35765440

RESUMEN

Sophorose is currently the most effective inducer of cellulase production by Trichoderma reesei; however, the use of byproduct sophorose from the stevioside acid hydrolysis process has not been developed. In this study, stevioside was hydrolysed with different concentrations of HCl to obtain isosteviol and a mixture of glucose and sophorose (MGS). Isosteviol showed good inhibitory effects on the growth of Aspergillus niger, Saccharomyces cerevisiae and Escherichia coli after separation. At the same time, MGS, as a byproduct, was evaluated for cellulase production to determine the feasibility of this approach. MGS was compared with common soluble inducers, such as lactose, cellobiose, and a mixture of glucose and ß-disaccharide (MGD), and induced higher cellulase production than the other inducers. The cellulase activity induced by MGS was 1.64- and 5.26-fold higher than that induced by lactose and cellobiose, respectively, and was not significantly different from that induced by MGD. The crude enzyme using MGS as an inducer with commercial ß-glucosidase was further tested by hydrolyzing NaOH-pretreated corn stover with 5% solid loading, and 33.4 g L-1 glucose was released with a glucose yield of 96.04%. The strategy developed in this work will be beneficial for reducing inducer production cost through a simple stevia glycoside hydrolysis reaction and will contribute to studies aimed at improving cellulase production using soluble inducers for easier operation in industrial-scale cellulase production.

3.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35683671

RESUMEN

Various types of 2D organic-inorganic perovskite solar cells have been developed and investigated due to better electron transport behavior and environmental stability. Controlling the formation of phases in the 2D perovskite films has been considered to play an important role in influencing the stability of perovskite materials and their performance in optoelectronic applications. In this work, Lewis base urea was used as an effective additive for the formation of 2D Ruddlesden-Popper (RP) perovskite (BA)2(MA)n-1PbnI3n+1 thin film with mixed phases (n = 2~4). The detailed structural morphology of the 2D perovskite thin film was investigated by in situ X-ray diffraction (XRD), grazing-incidence small-angle X-ray scattering (GISAXS) and photoluminescence mapping. The results indicated that the urea additive could facilitate the formation of 2D RP perovskite thin film with larger grain size and high crystallinity. The 2D RP perovskite thin films for solar cells exhibited a power conversion efficiency (PCE) of 7.9% under AM 1.5G illumination at 100 mW/cm2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA