Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; 63(9): e202314089, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38169141

RESUMEN

Metal halide perovskite single crystals are promising for diverse optoelectronic applications. As a universal issue of solution-grown perovskite single crystals, surface contamination causes adverse effect on material properties and device performance. Herein, learning from the self-cleaning effect of lotus leaf, we address the surface contamination issue by introducing an amphiphilic long-chain organic amine into the perovskite crystal growth solution. Self-assembly of CTAC provides a hydrophobic crystal surface, inducing spontaneous removal of residual growth solution, which results in clean surface and better optoelectronic properties of perovskite single crystals. An impressive efficiency of 23.4 % is obtained, setting a new record for FAx MA1-x PbI3 single-crystal perovskite solar cells (PSCs). Moreover, our strategy also applies to perovskite single crystals with different morphology and composition, which may contribute to improvement of other single-crystal perovskite optoelectronic devices.

2.
Angew Chem Int Ed Engl ; 62(19): e202302435, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892282

RESUMEN

Perovskite single crystals and polycrystalline films have complementary merits and deficiencies in X-ray detection and imaging. Herein, we report preparation of dense and smooth perovskite microcrystalline films with both merits of single crystals and polycrystalline films through polycrystal-induced growth and hot-pressing treatment (HPT). Utilizing polycrystalline films as seeds, multi-inch-sized microcrystalline films can be in situ grown on diverse substrates with maximum grain size reaching 100 µm, which endows the microcrystalline films with comparable carrier mobility-lifetime (µτ) product as single crystals. As a result, self-powered X-ray detectors with impressive sensitivity of 6.1×104  µC Gyair -1 cm-2 and low detection limit of 1.5 nGyair s-1 are achieved, leading to high-contrast X-ray imaging at an ultra-low dose rate of 67 nGyair s-1 . Combining with the fast response speed (186 µs), this work may contribute to the development of perovskite-based low-dose X-ray imaging.

3.
Angew Chem Int Ed Engl ; 61(28): e202205491, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506663

RESUMEN

The eco-friendly properties enable two-dimensional (2D) Cu-based perovskites as ideal candidates for next-generation optoelectronics, but practical application is limited by low photoelectric conversion efficiency because of poor carrier transport abilities. Here, we report enhanced structural stability of 2D CuBr4 perovskites under compression up to 30 GPa, without obvious volume collapse or structural amorphization, by inserting organic C6 H5 CH2 NH3 (PMA) groups between layers. The band gap value of (PMA)2 CuBr4 can be effectively tuned from 1.8 to 1.47 eV by employing external pressures, leading to a broadened absorption range of 400-800 nm. Notably, we successfully detected photoconductivity of the photoresponse at pressures from 10 to 40 GPa; the maximum value of 5×10-3  S cm-1 is observed at 28 GPa, indicating potential applications for high performance photovoltaic candidates under extreme conditions.

4.
Nat Mater ; 17(11): 1020-1026, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250177

RESUMEN

Lead halide perovskites have demonstrated outstanding performance in photovoltaics, photodetectors, radiation detectors and light-emitting diodes. However, the electromechanical properties, which are the main application of inorganic perovskites, have rarely been explored for lead halide perovskites. Here, we report the discovery of a large electrostrictive response in methylammonium lead triiodide (MAPbI3) single crystals. Under an electric field of 3.7 V µm-1, MAPbI3 shows a large compressive strain of 1%, corresponding to a mechanical energy density of 0.74 J cm-3, comparable to that of human muscles. The influences of piezoelectricity, thermal expansion, intrinsic electrostrictive effect, Maxwell stress, ferroelectricity, local polar fluctuation and methylammonium cation ordering on this electromechanical response are excluded. We speculate, using density functional theory, that electrostriction of MAPbI3 probably originates from lattice deformation due to formation of additional defects under applied bias. The discovery of large electrostriction in lead iodide perovskites may lead to new potential applications in actuators, sonar and micro-electromechanical systems and aid the understanding of other field-dependent material properties.

5.
Nat Mater ; 17(12): 1164, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30315212

RESUMEN

In the version of this Article originally published, the y axis of Fig. 1c was incorrectly labelled 'S (%)'; it should have been '-S (%)'. Also, the link for the Supplementary Video was missing from the online version of the Article. These errors have now been corrected.

6.
Nano Lett ; 17(12): 7330-7338, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29110483

RESUMEN

Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼105 A W-1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.

7.
Phys Chem Chem Phys ; 18(23): 15791-7, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27229447

RESUMEN

Hybrid solar cells (HSCs) based on aqueous polymers and nanocrystals are attractive due to their environmental friendliness and cost effectiveness. In this study, HSCs are fabricated from a series of water-soluble polymers with different highest occupied molecular orbital (HOMO) levels and nanocrystals with different Fermi levels. We demonstrate that the working principle of the aqueous-processed HSCs follows a p-n junction instead of a type-II heterojunction. The function of the polymer is to provide an interface dipole which can improve the build-in potential of the HSCs. Subsequently, the aqueous-processed HSCs are optimized following a p-n junction and an improved PCE of 5.41% is achieved, which is the highest for aqueous-processed HSCs. This study will provide instructive guidelines for the development of aqueous-processed HSCs.

8.
Small Methods ; : e2400099, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634300

RESUMEN

Metal halide perovskite single crystals are emerging candidates for X-ray detection, however, it is challenging for growth of thickness-controlled single-crystal wafer on commercial backplanes, limiting their practical imaging application. Herein, integration of micrometer-thick methylammonium lead triiodide (MAPbI3) single-crystal wafer on indium tin oxide (ITO) substrates by methylamine (MA)-induced interface recrystallization is reported. Through selection of hole transport material with rich functional group, intimate interface contact with low trap density can be achieved, leading to superior carrier transport properties and homogeneous photoresponse. The as-fabricated X-ray detectors exhibit high sensitivity of 1.4 × 104 µC Gyair -1 cm-2 and low detection limit of 177 nGyair s-1, which are comparable to previous reports based on free-standing MAPbI3 bulk crystals. This work provides a feasible strategy for constructing substrate-integrated single-crystal perovskite wafers with controlled thickness, which may promote practical imaging application of perovskite X-ray detectors.

9.
Phys Chem Chem Phys ; 14(17): 6119-25, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22441168

RESUMEN

Creation of nanoparticle (NP) architectures via a self-assembly strategy is the current means to integrate and/or modulate the functionalities of NPs. In this paper, we demonstrate the capability for constructing NP spherical superstructures through the specific interaction between host and guest molecules, for instance the model system of α-cyclodextrin (α-CD) and oleic acid (OA), which are decorated on two different NPs beforehand. Subsequently, the OA-decorated hydrophobic NPs are dispersed in hexane, whereas the α-CD-decorated NPs are dispersed in water. The blending of these two immiscible solutions produces NP binary superstructures because of the multiple linkages between the α-CD- and OA-decorated NPs. Control experiments indicate that the self-assembly of NPs occurs either at the hexane/water interface to form hybrid films or in the aqueous phase to generate spherical architectures, which strongly depends on the amount and the size of α-CD-decorated NPs. The high ratio and small size of the α-CD-decorated NPs facilitate the formation of spherical architectures. Competitive experiments with the addition of host α-CD and guest sodium oleate clearly confirm that the main driving force for the NP co-assembly is the specific interaction between α-CD and OA. In addition, the flexible decoration of α-CD and OA on the NPs makes the current strategy generally applicable for a variety of NPs, such as the superstructures of Au/Fe(3)O(4), Pt/Fe(3)O(4), and Au/NaYF(4):Yb,Tm, which is expected to promote the further application of NPs in environmental and biological sciences.

10.
Front Chem ; 9: 823868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071197

RESUMEN

Metal halide perovskite single crystals are a promising candidate for X-ray detection due to their large atomic number and high carrier mobility and lifetime. However, it is still challenging to grow large-area and thin single crystals directly onto substrates to meet real-world applications. In this work, millimeter-thick and inch-sized methylammonium lead tribromide (MAPbBr3) single-crystal wafers are grown directly on indium tin oxide (ITO) substrates through controlling the distance between solution surface and substrates. The single-crystal wafers are polished and treated with O3 to achieve smooth surface, lower trap density, and better electrical properties. X-ray detectors with a high sensitivity of 632 µC Gyair -1 cm-2 under -5 V and 525 µC Gyair -1 cm-2 under -1 V bias can be achieved. This work provides an effective way to fabricate substrate-integrated, large-area, and thickness-controlled perovskite single-crystal X-ray detectors, which is instructive for developing imaging application based on perovskite single crystals.

11.
Front Chem ; 9: 821699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096779

RESUMEN

Metal halide perovskite single-crystal detectors have attracted increasing attention due to the advantages of low noise, high sensitivity, and fast response. However, the narrow photoresponse range of widely investigated lead-based perovskite single crystals limit their application in near-infrared (NIR) detection. In this work, tin (Sn) is incorporated into methylammonium lead iodide (MAPbI3) single crystals to extend the absorption range to around 950 nm. Using a space-confined strategy, MAPb0.5Sn0.5I3 single-crystal thin films with a thickness of 15 µm is obtained, which is applied for sensitive NIR detection. The as-fabricated detectors show a responsivity of 0.514 A/W and a specific detectivity of 1.4974×1011 cmHz1/2/W under 905 nm light illumination and -1V. Moreover, the NIR detectors exhibit good operational stability (∼30000 s), which can be attributed to the low trap density and good stability of perovskite single crystals. This work demonstrates an effective way for sensitive NIR detection.

12.
Front Chem ; 8: 352, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411674

RESUMEN

Low-dimensional organic-inorganic hybrid materials have attracted tremendous attentions due to their fascinating properties as emerging star materials for light-emitting applications. Taking advantage of their rich chemical composition and structural diversity, here, a novel lead-free organic-manganese halide compound, (1-mPQBr)2MnBr4 (1-mPQ = 1-methylpiperazine, 1-C5H14N2) with zero-dimensional structure has been rationally designed and successfully synthesized through solvent-evaporation method. Systematical characterizations were carried out to investigate the structure, thermal and photophysical properties. The (1-mPQBr)2MnBr4 was found to crystallized into an orthorhombic crystal (P212121) with lattice parameters of a = 8.272(6) Å, b = 15.982(10) Å and c = 17.489(11) Å. The structure consists of isolated [MnBr4]2- clusters and free Br- ions as well as [C5H14N2]2+ molecules. Thermal analysis indicates that it is stable up to 300°C. Upon ultraviolet photoexcitation, the (1-mPQBr)2MnBr4 exhibits intense green emission centered at 520 nm with a narrow full width at half-maximum of 43 nm at room temperature, which should be assigned to the spin-forbidden internal transition (4T1(G) to 6A1) of tetrahedrally coordinated Mn2+ ions. The superior photoluminescence properties coupled with facile and efficient synthesis method of this material suggest its considerable promise to be utilized as light-emitting materials.

13.
ChemSusChem ; 12(24): 5228-5232, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31709721

RESUMEN

The exceptional structural tunability of organic metal halides endows them with fascinating electronic and photophysical properties, providing much scope for applications. In this work, single crystals of the organic metal halide (C4 H9 NH3 )2 MnI4 are found to show reversible thermo-induced luminescent chromism within a wide temperature range. The (C4 H9 NH3 )2 MnI4 single crystal exhibits two emission peaks at 550 and 672 nm, which are assigned to a d-d transition of Mn2+ -centered tetrahedra and self-trapped excitons, respectively. The temperature-dependent emission color change is attributed to the thermo-induced trapping and detrapping process of the self-trapped exciton. (C4 H9 NH3 )2 MnI4 exhibits a maximum photoluminescence quantum efficiency of up to 68 % at 70 °C. The disclosed interacted photoluminescence decay mechanisms may prove useful for the further design of organic metal halides for optical thermometry.

14.
J Phys Chem Lett ; 9(3): 654-658, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29350044

RESUMEN

Two-dimensional (2D) perovskites have been shown to be more stable than their three-dimensional (3D) counterparts due to the protection of the organic ligands. Herein a method is introduced to form 2D/3D stacking structures by the reaction of 3D perovskite with n-Butylamine (BA). Different from regular treatment with n-Butylammonium iodide (BAI) where 2D perovskite with various layers form, the reaction of BA with MAPbI3 only produce (BA)2PbI4, which has better protection due to more organic ligands in (BA)2PbI4 than the mixture of 2D perovskites. Compared to BAI treatment, BA treatment results in smoother 2D perovskite layer on 3D perovskites with a better coverage. The photovoltaic devices with 2D/3D stacking structures show much improved stability in comparison to their 3D counterparts when subjected to heat stress tests. Moreover, the conversion of defective surface into 2D layers also induces passivation of the 3D perovskites resulting in an enhanced efficiency.

15.
Adv Mater ; 30(9)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29333763

RESUMEN

Cesium-based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss ) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2 Br absorber and polythiophene hole-acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole-injection into the hole-acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed-halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open-circuit voltage (VOC ) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium-lead mixed-halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss .

17.
Adv Mater ; 29(39)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846818

RESUMEN

Organic-inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin-single-crystal (TSC) photodetectors are fabricated with a vertical p-i-n structure. Due to the absence of grain-boundaries, the trap densities of TSCs are 10-100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3 NH3 PbBr3 and CH3 NH3 PbI3 TSCs show low noise of 1-2 fA Hz-1/2 , yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W-1 . The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3 NH3 PbBr3 photodetectors show a linear response to green light from 0.35 pW cm-2 to 2.1 W cm-2 , corresponding to a linear dynamic range of 256 dB.

18.
Nat Commun ; 8(1): 1890, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29192232

RESUMEN

The efficiency of perovskite solar cells has surged in the past few years, while the bandgaps of current perovskite materials for record efficiencies are much larger than the optimal value, which makes the efficiency far lower than the Shockley-Queisser efficiency limit. Here we show that utilizing the below-bandgap absorption of perovskite single crystals can narrow down their effective optical bandgap without changing the composition. Thin methylammonium lead triiodide single crystals with tuned thickness of tens of micrometers are directly grown on hole-transport-layer covered substrates by a hydrophobic interface confined lateral crystal growth method. The spectral response of the methylammonium lead triiodide single crystal solar cells is extended to 820 nm, 20 nm broader than the corresponding polycrystalline thin-film solar cells. The open-circuit voltage and fill factor are not sacrificed, resulting in an efficiency of 17.8% for single crystal perovskite solar cells.

19.
ACS Appl Mater Interfaces ; 8(1): 900-7, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26670604

RESUMEN

In this work, improved solar cells from aqueous CdTe NCs is achieved by replacing evaporated MoOx with spiro-OMeTAD as a hole transfer layer. The increased Voc and Jsc can be attributed to interfacial dipole effect and reduced back recombination loss, respectively. A high PCE of 6.56% for solar cells from aqueous NCs is obtained by optimizing the microstructure further.

20.
ACS Appl Mater Interfaces ; 8(11): 7101-10, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26931540

RESUMEN

A novel kind of hybrid solar cell (HSC) was developed by introducing water-soluble insulating polymer poly(vinyl alcohol) (PVA) into nanocrystals (NCs), which revealed that the most frequently used conjugated polymer could be replaced by an insulating one. It was realized by strategically taking advantage of the characteristic of decomposition for the polymer at annealing temperature, and it was interesting to discover that partial decomposition of PVA left behind plenty of pits on the surfaces of CdTe NC films, enlarging surface contact area between CdTe NCs and subsequently evaporated MoO3. Moreover, the residual annealed PVA filled in the voids among spherical CdTe NCs, which led to the decrease of leakage current. An improved shunt resistance (increased by ∼80%) was achieved, indicating the charge-carrier recombination was effectively overcome. As a result, the new HSCs were endowed with increased Voc, fill factor, and power conversion efficiency compared with the pure NC device. This approach can be applied to other insulating polymers (e.g., PVP) with advantages in synthesis, type, economy, stability, and so on, providing a novel universal cost-effective way to achieve higher photovoltaic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA