Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D269-D279, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36300630

RESUMEN

RNA modification is a dynamic and reversible process regulated by a series of writers, erasers and readers (WERs). Abnormal changes of WERs will disrupt the RNA modification homeostasis of their target genes, leading to the dysregulation of RNA metabolisms such as RNA stability and translation, and consequently to diseases such as cancer. A public repository hosting the regulatory relationships between WERs and their target genes will help in understanding the roles of RNA modifications in various physiological and pathological conditions. Previously, we developed a database named 'm6A2Target' to host targets of WERs in m6A, one of the most prevalent RNA modifications in eukaryotic cells. To host all RNA modification (RM)-related WER-target associations, we hereby present an updated database, named 'RM2Target' (http://rm2target.canceromics.org/). In this update, RM2Target encompasses 1 619 653 WER-target associations for nine RNA modifications in human and mouse, including m6A, m6Am, m5C, m5U, m1A, m7G, pseudouridine, 2'-O-Me and A-to-I. Extensive annotations of target genes are available in RM2Target, including but not limited to basic gene information, RNA modifications, RNA-RNA/RNA-protein interactions and related diseases. Altogether, we expect that RM2Target will facilitate further downstream functional and mechanistic studies in the field of RNA modification research.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Procesamiento Postranscripcional del ARN , Animales , Humanos , Ratones , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN
2.
Hepatology ; 77(4): 1122-1138, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598182

RESUMEN

BACKGROUND AND AIMS: Radiofrequency ablation (RFA) is an important curative therapy in hepatocellular carcinoma (HCC), but recurrence rate remains as high as all the other HCC therapeutic modalities. Methyltransferase 1 (METTL1), an enzyme for m 7 G tRNA modification, was reported to promote HCC development. Here, we assessed the role of METTL1 in shaping the immunosuppressive tumor microenvironment after insufficient RFA (iRFA). APPROACH AND RESULTS: By immunohistochemistry and multiplex immunofluorescence (mIF) staining, we showed that METTL1 expression was enhanced in post-RFA recurrent HCC, accompanied by increased CD11b + CD15 + polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and decreased CD8 + T cells. Mechanistically, heat-mediated METTL1 upregulation enhanced TGF-ß2 translation to form the immunosuppressive environment by induction of myeloid-derived suppressor cell. Liver-specific overexpression or knockdown of Mettl1 significantly affected the accumulation of PMN-MDSCs and subsequently affected CD8 + T cell infiltration. Complete RFA successfully eliminated the tumor, whereas iRFA-treated mice exhibited enhanced tumor growth and metastasis with increased PMN-MDSC accumulation and decreased CD8 + T cells compared to sham surgery. Interrupting METTL1-TGF-ß2-PMN-MDSC axis by anti-Ly6G antibody, or knockdown of hepatoma-intrinsic Mettl1 or Tgfb2 , or TGF-ß signaling blockade significantly mitigated tumor progression induced by iRFA and restored CD8 + T cell population. CONCLUSIONS: Our study sheds light on the pivotal role of METTL1 in modulating an immunosuppressive microenvironment and demonstrated that interrupting METTL1-TGF-ß2-PMN-MDSC axis could be a therapeutic strategy to restore antitumor immunity and prevent HCC recurrence after RFA treatment, meriting further clinical studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta2/metabolismo , Microambiente Tumoral
3.
J Chem Inf Model ; 64(7): 2205-2220, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37319418

RESUMEN

Predicting protein-ligand binding affinity is a central issue in drug design. Various deep learning models have been published in recent years, where many of them rely on 3D protein-ligand complex structures as input and tend to focus on the single task of reproducing binding affinity. In this study, we have developed a graph neural network model called PLANET (Protein-Ligand Affinity prediction NETwork). This model takes the graph-represented 3D structure of the binding pocket on the target protein and the 2D chemical structure of the ligand molecule as input. It was trained through a multi-objective process with three related tasks, including deriving the protein-ligand binding affinity, protein-ligand contact map, and ligand distance matrix. Besides the protein-ligand complexes with known binding affinity data retrieved from the PDBbind database, a large number of non-binder decoys were also added to the training data for deriving the final model of PLANET. When tested on the CASF-2016 benchmark, PLANET exhibited a scoring power comparable to the best result yielded by other deep learning models as well as a reasonable ranking power and docking power. In virtual screening trials conducted on the DUD-E benchmark, PLANET's performance was notably better than several deep learning and machine learning models. As on the LIT-PCBA benchmark, PLANET achieved comparable accuracy as the conventional docking program Glide, but it only spent less than 1% of Glide's computation time to finish the same job because PLANET did not need exhaustive conformational sampling. Considering the decent accuracy and efficiency of PLANET in binding affinity prediction, it may become a useful tool for conducting large-scale virtual screening.


Asunto(s)
Planetas , Proteínas , Ligandos , Proteínas/química , Unión Proteica , Redes Neurales de la Computación , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular
4.
Mol Ther ; 31(11): 3225-3242, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37735874

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a deadly cancer with rapid tumor progression. While hyperactive mRNA translation caused by mis-regulated mRNA or tRNA modifications promotes ICC development, the role of rRNA modifications remains elusive. Here, we found that 18S rRNA m6A modification and its methyltransferase METTL5 were aberrantly upregulated in ICC and associated with poorer survival (log rank test, p < 0.05). We further revealed the critical role of METTL5-mediated 18S rRNA m6A modification in regulation of ICC cell growth and metastasis using loss- and gain-of function assays in vitro and in vivo. The oncogenic function of METTL5 is corroborated using liver-specific knockout and overexpression ICC mouse models. Mechanistically, METTL5 depletion impairs 18S rRNA m6A modification that hampers ribosome synthesis and inhibits translation of G-quadruplex-containing mRNAs that are enriched in the transforming growth factor (TGF)-ß pathway. Our study uncovers the important role of METTL5-mediated 18S rRNA m6A modification in ICC and unravels the mechanism of rRNA m6A modification-mediated oncogenic mRNA translation control.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Ratones , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Colangiocarcinoma/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Biosíntesis de Proteínas , Línea Celular Tumoral
5.
Bioinformatics ; 38(7): 2054-2056, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35022687

RESUMEN

SUMMARY: MeRIPseqPipe is an integrated and automatic pipeline that can provide users a friendly solution to perform in-depth mining of MeRIP-seq data. It integrates many functional analysis modules, range from basic processing to downstream analysis. All the processes are embedded in Nextflow with Docker support, which ensures high reproducibility and scalability of the analysis. MeRIPseqPipe is particularly suitable for analyzing a large number of samples at once with a simple command. The final output directory is structured based on each step and tool. And visualization reports containing various tables and plots are provided as HTML files. AVAILABILITY AND IMPLEMENTATION: MeRIPseqPipe is freely available at https://github.com/canceromics/MeRIPseqPipe. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Reproducibilidad de los Resultados
6.
Dig Dis Sci ; 66(2): 493-502, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32215815

RESUMEN

BACKGROUND AND AIMS: Hypoxia represents one of the most pervasive microenvironmental stresses in HCC due to the overwhelming growth and inadequate blood supply. HIF1α as an important transcription factor participates in the regulation of various biological behaviors of HCC cells under hypoxia. Our previous study indicated that miR-375 is a hypoxia-associated miRNA. However, the interaction between miR-375 and HIF1α remains unclear. METHODS: Bioinformatic analysis was performed for miRNA screening. qRT-PCR, western blotting, and immunohistochemical staining were used to detect the expression of related molecules. Bioinformatic analysis and dual luciferase assay were used to predict and further confirm the target association. Transwell chamber assay and flow cytometry were, respectively, used to detect migration, invasion and apoptosis of hepatoma cells. RESULTS: MiR-375 presented an obviously differential expression in human HCCs versus background livers (BLs) and HCCs versus normal liver tissues (NLTs). In rat models, miR-375 was gradually declined during hepatocarcinogenesis. HIF1α was remarkably upregulated at protein level rather than at mRNA level in human HCCs versus BLs, HCCs versus NLTs, BLs versus NLTs, and in rat fibrotic livers versus NLTs. HIF1α was determined to be a target of miR-375. MiR-375 inhibitor induced the migration and invasive capabilities and attenuated apoptosis of hepatoma cells under hypoxia. Depriving HIF1α by siRNA could partially reverse the function of miR-375 inhibitor under hypoxia. CONCLUSIONS: MiR-375 impairs the invasive capabilities of HCC cells by targeting HIF1α under hypoxia.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Neoplasias Hepáticas/metabolismo , MicroARNs/biosíntesis , Hipoxia Tumoral/fisiología , Animales , Secuencia de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , MicroARNs/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Ratas , Ratas Wistar
7.
Mol Med ; 26(1): 14, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000660

RESUMEN

BACKGROUND: Aspirin, as a non-steroidal anti-inflammatory drug, can improve the survival rate of patients with colorectal cancer, while aspirin is effective in patients with PIK3CA mutant colorectal cancer (CRC). However, the mechanism of aspirin in the treatment of PIK3CA mutated CRC patients remains unclear. METHODS: In this study, immunohistochemistry was used to detect the expression levels of PI3K and Raptor in colorectal cancer patients with PIK3CA mutation and PIK3CA wild-type patients. To demonstrate that aspirin has a better effect on the CRC of PIK3CA mutations in association with the PI3K/Akt/Raptor pathway, we used aspirin to treat PIK3CA mutant CRC cells (HCT-116 and RKO). Subsequently, the CCK8 assay and flow cytometry assay were used to detect the apoptosis of PIK3CA mutant CRC cells before and after aspirin use. Western blot was used to detect the changes of PI3K/Akt/Raptor-associated protein, autophagy protein microtubule associated protein 1 light chain 3 alpha (MAP1LC3A, LC3), beclin 1 (BECN1) and apoptosis protein BCL2-associated X protein/ BCL2 apoptosis regulator (Bax/Bcl2), Caspase 3 after treatment of CRC cells with PIK3CA mutation by aspirin. RESULTS: Phosphoinositide-3-kinase (PI3K) and regulatory associated protein of MTOR complex 1 (Raptor) protein expression levels were higher in PIK3CA-mutant patients than in IK3CA wild-type patients. The expression of Bax/Bcl2 increased after treatment indicates that aspirin can induce apoptosis of PIK3CA-mutant CRC cells. The expression level of MAP1LC3 (LC3) in cells increases with the concentration of aspirin demonstrates that aspirin can induce autophagy in CRC cells. After 48 h of treatment with aspirin, the phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase B1 (S6K1) was reduced, cell proliferation has been inhibited. After treatment with aspirin, as phosphorylation of PI3K and Protein kinase B (PKB, Akt) was decreased, Raptor expression was also decreased. CONCLUSION: Aspirin can regulate the proliferation, apoptosis and autophagy of CRC cells through the PI3K/Akt/Raptor pathway, affecting PIK3CA-mutant CRC.


Asunto(s)
Aspirina/farmacología , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Autofagia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Masculino , Mutación , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
8.
BMC Genomics ; 20(1): 975, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830918

RESUMEN

BACKGROUND: Alginate is an important cell wall component and mannitol is a soluble storage carbon substance in the brown seaweed Saccharina japonica. Their contents vary with kelp developmental periods and harvesting time. Alginate and mannitol regulatory networks and molecular mechanisms are largely unknown. RESULTS: With WGCNA and trend analysis of 20,940 known genes and 4264 new genes produced from transcriptome sequencing of 30 kelp samples from different stages and tissues, we deduced that ribosomal proteins, light harvesting complex proteins and "imm upregulated 3" gene family are closely associated with the meristematic growth and kelp maturity. Moreover, 134 and 6 genes directly involved in the alginate and mannitol metabolism were identified, respectively. Mannose-6-phosphate isomerase (MPI2), phosphomannomutase (PMM1), GDP-mannose 6-dehydrogenase (GMD3) and mannuronate C5-epimerase (MC5E70 and MC5E122) are closely related with the high content of alginate in the distal blade. Mannitol accumulation in the basal blade might be ascribed to high expression of mannitol-1-phosphate dehydrogenase (M1PDH1) and mannitol-1-phosphatase (M1Pase) (in biosynthesis direction) and low expression of mannitol-2-dehydrogenase (M2DH) and Fructokinase (FK) (in degradation direction). Oxidative phosphorylation and photosynthesis provide ATP and NADH for mannitol metabolism whereas glycosylated cycle and tricarboxylic acid (TCA) cycle produce GTP for alginate biosynthesis. RNA/protein synthesis and transportation might affect alginate complex polymerization and secretion processes. Cryptochrome (CRY-DASH), xanthophyll cycle, photosynthesis and carbon fixation influence the production of intermediate metabolite of fructose-6-phosphate, contributing to high content of mannitol in the basal blade. CONCLUSIONS: The network of co-responsive DNA synthesis, repair and proteolysis are presumed to be involved in alginate polymerization and secretion, while upstream light-responsive reactions are important for mannitol accumulation in meristem of kelp. Our transcriptome analysis provides new insights into the transcriptional regulatory networks underlying the biosynthesis of alginate and mannitol during S. japonica developments.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Laminaria/crecimiento & desarrollo , Algas Marinas/crecimiento & desarrollo , Proteínas Algáceas/genética , Alginatos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Laminaria/genética , Manitol/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Fosforilación Oxidativa , Algas Marinas/genética , Análisis de Secuencia de ARN
9.
Eur Radiol ; 29(9): 4648-4659, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30689032

RESUMEN

OBJECTIVES: Preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular cancer (HCC) is important for surgery strategy making. We aimed to develop and validate a combined intratumoural and peritumoural radiomics model based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for preoperative prediction of MVI in primary HCC patients. METHODS: This study included a training cohort of 110 HCC patients and a validating cohort of 50 HCC patients. All the patients underwent preoperative Gd-EOB-DTPA-enhanced MRI examination and curative hepatectomy. The volumes of interest (VOIs) around the hepatic lesions including intratumoural and peritumoural regions were manually delineated in the hepatobiliary phase of MRI images, from which quantitative features were extracted and analysed. In the training cohort, machine-learning method was applied for dimensionality reduction and selection of the extracted features. RESULTS: The proportion of MVI-positive patients was 38.2% and 40.0% in the training and validation cohort, respectively. Supervised machine learning selected ten features to establish a predictive model for MVI. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity of the combined intratumoural and peritumoural radiomics model in the training and validation cohort were 0.85 (95% confidence interval (CI), 0.77-0.93), 88.2%, 76.2%, and 0.83 (95% CI, 0.71-0.95), 90.0%, 75.0%, respectively. CONCLUSIONS: We evaluate quantitative Gd-EOB-DTPA-enhanced MRI image features of both intratumoural and peritumoural regions and provide an effective radiomics-based model for the prediction of MVI in HCC patients, and may therefore help clinicians make precise decisions regarding treatment before the surgery. KEY POINTS: • An effective radiomics model for prediction of microvascular invasion in HCC patients is established. • The radiomics model is superior to the radiologist in prediction of MVI. • The radiomics model can help clinicians in pretreatment decision making.


Asunto(s)
Medios de Contraste , Gadolinio DTPA , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Microvasos/patología , Cuidados Preoperatorios/métodos , Femenino , Humanos , Hígado/irrigación sanguínea , Hígado/diagnóstico por imagen , Hígado/patología , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/patología , Masculino , Microvasos/diagnóstico por imagen , Persona de Mediana Edad , Invasividad Neoplásica , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Int J Mol Sci ; 20(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096691

RESUMEN

Blue light (BL) plays an important role in regulation of the growth and development of aquatic plants and land plants. Aureochrome (AUREO), the recent BL photoreceptor identified in photosynthetic stramenopile algae, is involved in the photomorphogenesis and early development of Saccharina japonica porophytes (kelp). However the factors that interact with the SjAUREO under BL conditions specifically are not clear. Here in our study, three high quality cDNA libraries with CFU over 5 × 106 and a recombination rate of 100% were constructed respectively through white light (WL), BL and darkness (DK) treatments to the juvenile sporophytes. Based on the constructed cDNA libraries, the interactors of SjAUREO were screened and analyzed. There are eighty-four genes encoding the sixteen predicted proteins from the BL cDNA library, sixty-eight genes encoding eighteen predicted proteins from the DK cDNA library, and seventy-four genes encoding nineteen proteins from the WL cDNA library. All the predicted proteins are presumed to interact with SjAUREO when co-expressed with SjAUREO seperately. The 40S ribosomal protein S6 (RPS6), which only exists in the BL treated cDNA library except for two other libraries, and which is essential for cell proliferation and is involved in cell cycle progression, was selected for detailed analysis. We showed that its transcription was up-regulated by BL, and was highly transcribed in the basal blade (meristem region) of juvenile sporophytes but less in the distal part. Taken together, our results indicated that RPS6 was highly involved in BL-mediated kelp cellular division and photomorphogenesis by interacting with SjAUREO.


Asunto(s)
Laminaria/metabolismo , Laminaria/efectos de la radiación , Luz , Proteína S6 Ribosómica/metabolismo , Proteína S6 Ribosómica/efectos de la radiación , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/efectos de la radiación , Proliferación Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Biblioteca de Genes , Genes de Plantas/genética , Laminaria/genética , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efectos de la radiación , Fotosíntesis , Proteínas de Plantas/genética , Proteínas Ribosómicas/genética , Regulación hacia Arriba/efectos de la radiación
11.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426420

RESUMEN

Tic20 is an important translocon protein that plays a role in protein transport in the chloroplast. The sequence of Tic20 was determined in the lower brown alga Saccharina japonica. Structural analysis of SjTic20 revealed a noncanonical structure consisting of an N-terminal non-cyanobacterium-originated EF-hand domain (a helix-loop-helix structural domain) and a C-terminal cyanobacterium-originated Tic20 domain. Subcellular localization and transmembrane analysis indicated that SjTic20 featured an "M"-type Nin-Cin-terminal orientation, with four transmembrane domains in the innermost membrane of the chloroplast in the microalga Phaeodactylum tricornutum, and the EF-hand domain was entirely extruded into the chloroplast stroma. Our study provides information on the structure, localization, and topological features of SjTic20, and further functional analysis of SjTic20 in S. japonica is needed.


Asunto(s)
Cloroplastos/química , Diatomeas/química , Proteínas de Transporte de Membrana/análisis , Phaeophyceae/química , Motivos EF Hand , Microalgas/química
12.
BMC Genomics ; 18(1): 446, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587594

RESUMEN

BACKGROUND: The mandarin fish (Siniperca chuatsi) is an important and widely cultured fish in China. However, the lack of selective breeding of mandarin fish in previous decades has resulted in a decline in the growth rate of pond-cultured fish, a shortened period of sexual maturity, and reduced disease resistance; these issues seriously affect the quality and safety of the fish products. Therefore, it is necessary to establish a selective breeding program for the mandarin fish to improve the economical traits of the fish and to sustain the development of the mandarin fish industry. RESULTS: We constructed a high-density linkage map for it based on double digest restriction site associated DNA sequencing (ddRAD-Sequencing). This map contained 3283 dimorphic single nucleotide polymorphism markers and 24 linkage groups (LGs). The total map-length was 1972.01 cM, with an average interlocus distance of 0.61 cM. One significant quantitative trait locus (QTL) for sex determination trait was detected on LG23, which was supported by five markers, clustered between 60.27 and 68.71 cM. The highest logarithm of odds value (17.73) was located at 60.27 cM, near the marker r1_73194, accounting for 53.3% of the phenotypic variance. Genotypes of all the male fish on r1_33008 were homozygous, whereas those of all females were heterozygous. Thus, LG23 was considered a sex-related linkage group. Eleven significant QTLs, for three growth traits, at two growth stages and the increased values were distributed on four LGs; their contributions to the phenotypic variation were quite low (12.4-17.2%), suggesting that multiple genes affected the growth traits. CONCLUSION: This high-resolution genetic map provides a valuable resource for fine-mapping of important traits and for identification of sex-related markers that should facilitate breeding of all-female mandarin fish for aquaculture and mechanistic studies on sex determination.


Asunto(s)
Mapeo Cromosómico , Sitios Genéticos/genética , Perciformes/crecimiento & desarrollo , Perciformes/genética , Procesos de Determinación del Sexo/genética , Animales , Biblioteca de Genes , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple
13.
J Microencapsul ; 33(1): 64-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26642874

RESUMEN

Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coli(CD)). Alginate microcapsules containing either CD or Escherichia coli(CD) were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coli(CD) using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coli(CD)/5-FC resulted in cell kill and reduced proliferation of 9 L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coli(CD) is equally effective for enzyme-prodrug therapy.


Asunto(s)
Citosina Desaminasa , Enzimas Inmovilizadas , Escherichia coli/enzimología , Fluorouracilo , Glioma/tratamiento farmacológico , Profármacos , Alginatos/química , Alginatos/farmacología , Animales , Línea Celular Tumoral , Células Inmovilizadas/enzimología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/farmacología , Fluorouracilo/química , Fluorouracilo/farmacología , Glioma/metabolismo , Glioma/patología , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Profármacos/química , Profármacos/farmacología , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
15.
Oncogene ; 43(5): 328-340, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040804

RESUMEN

Reprogramming of lipid metabolism during hepatocarcinogenesis is not well elucidated. Here, we aimed to explore pivotal RNA-binding motif proteins (RBMs) in lipid metabolism and their therapeutic potential in hepatocellular carcinoma (HCC). Through bioinformatic analysis, we identified RBM45 as a critical gene of interest among differentially expressed RBMs in HCC, with significant prognostic relevance. RBM45 influenced the malignant biological phenotype and lipid metabolism of HCC cells. Mechanically, RBM45 promotes de novo lipogenesis in HCC by directly targeting two key enzymes involved in long-chain fatty acid synthesis, ACSL1 and ACSL4. RBM45 also targets Rictor, which has been demonstrated to modulate lipid metabolism profoundly. RBM45 also aided lipid degradation through activating a key fatty acid ß oxidation enzyme, CPT1A. Thus, RBM45 boosted lipid synthesis and decomposition, indicating an enhanced utility of lipid fuels in HCC. Clinically, body mass index was positively correlated with RBM45 in human HCCs. The combination of a PI3K/AKT/mTOR pathway inhibitor in vitro or Sorafenib in orthotopic liver cancer mouse models with shRBM45 has a more significant therapeutic effect on liver cancer than the drug alone. In summary, our findings highlight the versatile roles of RBM45 in lipid metabolism reprogramming and its therapeutic potential in HCC. Lipids induced RBM45 expression. In turn, RBM45 promoted the utility of lipid in HCCs through accelerating both de novo lipogenesis and fatty acid ß oxidation, which required the participation of Rictor, a core component of mTORC2 that has been demonstrated to modulate lipid metabolism potently, as well as ACSL1/ACSL4, two key enzymes of long-chain fatty acid synthesis. When the first-line chemotherapy drug sorafenib is combined with a PI3K/AKT/mTOR pathway inhibitor (MK2206 is an AKT inhibitor, rapamycin is a mTOR inhibitor, and inhibiting RBM45 can significantly inhibit Rictor), cell cycle, proliferation, lipid metabolism reprogramming, and hepatocarcinogenesis can be significantly inhibited, while apoptosis can be significantly enhanced.


Asunto(s)
Carcinoma Hepatocelular , Coenzima A Ligasas , Neoplasias Hepáticas , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Ratones , Animales , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metabolismo de los Lípidos/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Lípidos , Ácidos Grasos , Proliferación Celular/genética
16.
Science ; 383(6682): eadh4859, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301022

RESUMEN

Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.


Asunto(s)
División del ADN , Endonucleasas , ARN Catalítico , Animales , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Hidrólisis , Intrones , Conformación de Ácido Nucleico , Empalme del ARN , ARN Catalítico/química , ARN Catalítico/genética
17.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676466

RESUMEN

In this work, based on Y3Al5O12:Ce3+ (YAG:Ce3+) transparent ceramic and (Sr, Ca)AlSiN3:Eu2+ phosphors, novel green-light-emitting materials were systematically studied. YAG:Ce3+ transparent ceramics with different doping-concentrations, from 0% to 1% (Sr, Ca)AlSiN3:Eu2+ phosphors, were fabricated by dry pressing and vacuum sintering. The serial phosphor ceramics had 533 nm green-light emission when excited by 460 nm blue light. The PL, PLE, and chromaticity performances were measured, indicating that more of the green-light component was emitted with the increase in doping concentration. The addition of (Sr, Ca)AlSiN3:Eu2+ phosphor increased the green-light wavelength area and improved the quantum yield (QY) of the YAG:Ce3+ ceramic matrix. The phase composition, microstructure, crystal-field structure and phosphor distribution of (Sr, Ca)AlSiN3:Eu2+ phosphor-doped YAG:Ce3+ transparent ceramics were investigated, to explore the microscopic causes of the spectral changes. Impressively, (Sr, Ca)AlSiN3:Eu2+ phosphors were distributed homogeneously, and the pinning effect of phosphor caused the suppression of grain growth. The novel materials could provide an effective strategy for full-spectrum white lighting and displaying applications in the future.

18.
Sci Total Environ ; 873: 162294, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801342

RESUMEN

Alkali metal poisoning has been an intricate and unsolved issue confining the catalytic activity of NH3-SCR catalysts up to now. Herein, the effect of NaCl and KCl on catalytic activity of CrMn catalyst for NH3-SCR of NOx was systematically investigated to clarify the alkali metal poisoning by combined experiments and theoretical calculations. It unveiled that NaCl/KCl could deactivate CrMn catalyst due to the decrease in specific surface area, electron transfer (Cr5++Mn3+↔Cr3++Mn4+), redox ability and oxygen vacancy and NH3/NO adsorption. In addition, NaCl cut off E-R mechanism reactions by inactivating surface Brønsted/Lewis acid sites. DFT calculations revealed that (1) Na and K could weaken MnO bond, (2) competitive adsorption between Cl and NH3 was a main reason weakening Lewis acid, (3) Cl adsorption was also a major cause diminishing Brønsted acid and oxygen vacancy, (4) Both Na and K seriously impeded NO adsorption/activation, (5) NaCl/KCl increased the reaction heat of H2O desorption (rate-determining step) in E-R mechanism reactions and KCl elevated its energy barrier in L-H mechanism reactions. Thus, this study provides the deep understanding of alkali metal poisoning and a well strategy to synthesize NH3-SCR catalysts with outstanding alkali metal resistance.

19.
Sci Total Environ ; 855: 158881, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36411606

RESUMEN

The facet-dependent reactivity of CrMn catalysts was still unclear, hindering the further enhancement of their low-temperature SCR performance. Herein, the facet-dependent reactivity of CrMn1.5O4 catalyst for NH3-SCR of NOx was innovatively illustrated by numerous characterizations and density functional theory (DFT) calculations. Exposed (100) facet of CrMn1.5O4 catalyst exhibited best low-temperature SCR activity with ≥90 % NO conversion within 148-296 °C and 2.86 × 10-3 mol/(g·s) reaction rate within 160-240 °C. The characterizations revealed that (100) facet could induce the increase of BET specific area, electron transfer, concentration of Mn4+ and Oα, surface acidity, redox ability, NH3 and NOx adsorption/activation capacity. Subsequently, DFT calculations demonstrated that (100) facet exhibited the strongest affinity for NH3 and NO due to its unique 3O3c-Mn5c-2O4c bond and abundant charges transfer near the active adsorption sites, and Brønsted acid and oxygen vacancies were most easily formed on (100) facet. Furthermore, H2O formation as the rate determining step easily occurred on (100) facet. Eventually, we successfully improved the low-temperature SCR activity of CrMn1.5O4 catalyst by further tailoring highly active (100) facet from 0.754 to 0.865. This work provides the deeper understanding of facet-dependent reactivity and a good strategy to improve the catalytic activity of the catalysts.


Asunto(s)
Amoníaco , Amoníaco/química , Catálisis , Oxidación-Reducción , Adsorción , Temperatura
20.
Genomics Proteomics Bioinformatics ; 21(2): 337-348, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36049666

RESUMEN

Immunotherapy is a promising cancer treatment method; however, only a few patients benefit from it. The development of new immunotherapy strategies and effective biomarkers of response and resistance is urgently needed. Recently, high-throughput bulk and single-cell gene expression profiling technologies have generated valuable resources. However, these resources are not well organized and systematic analysis is difficult. Here, we present TIGER, a tumor immunotherapy gene expression resource, which contains bulk transcriptome data of 1508 tumor samples with clinical immunotherapy outcomes and 11,057 tumor/normal samples without clinical immunotherapy outcomes, as well as single-cell transcriptome data of 2,116,945 immune cells from 655 samples. TIGER provides many useful modules for analyzing collected and user-provided data. Using the resource in TIGER, we identified a tumor-enriched subset of CD4+ T cells. Patients with melanoma with a higher signature score of this subset have a significantly better response and survival under immunotherapy. We believe that TIGER will be helpful in understanding anti-tumor immunity mechanisms and discovering effective biomarkers. TIGER is freely accessible at http://tiger.canceromics.org/.


Asunto(s)
Melanoma , Humanos , Melanoma/genética , Melanoma/terapia , Transcriptoma , Inmunoterapia , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA