Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 17(6): 305-311, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929503

RESUMEN

A novel FDA approved in vivo dosimetry device system using plastic scintillating detectors placed in an endorectal balloon to provide real-time in vivo dosimetry for prostatic rectal interface was tested for use with stereotactic body radiotherapy (SBRT). The system was used for the first time ever to measure dose during linear accelerator based SBRT. A single patient was treated with a total dose of 36.25 Gy given in 5 fractions. Delivered dose was measured for each treatment with the detectors placed against the anterior rectal wall near the prostate rectal interface. Measured doses showed varying degrees of agreement with computed/ planned doses, with average combined dose found to be within 6% of the expected dose. The variance between measurements is most likely due to uncertainty of the detector location, as well as variation in the placement of a new balloon prior to each fraction. Distance to agreement for the detectors was generally found to be within a few millimeters, which also suggested that the differences in measured and calculated doses were due to positional uncertainty of the detectors during the SBRT, which had sharp dose falloff near the penumbra along the rectal wall. Overall, the use of a real time in vivo dosimeter provided a level of safety and improved confidence in treatment delivery. We are evaluating the device further in an IRB-approved prospective partial prostate SBRT trial, and believe further clinical investigations are warranted.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Dosimetría in Vivo/métodos , Neoplasias de la Próstata/cirugía , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Recto/efectos de la radiación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica
2.
J Appl Clin Med Phys ; 16(5): 333-343, 2015 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-26699317

RESUMEN

The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.


Asunto(s)
Fantasmas de Imagen , Prótesis e Implantes , Terapia de Protones , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Neoplasias de la Columna Vertebral/radioterapia , Acero Inoxidable , Titanio , Algoritmos , Artefactos , Tornillos Óseos , Humanos , Dispositivos de Fijación Ortopédica , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Tomografía Computarizada por Rayos X
3.
Acta Oncol ; 52(3): 553-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22554342

RESUMEN

PURPOSE: To investigate the moving gap region dosimetry in proton beam cranio-spinal irradiation (CSI) to provide optimal dose uniformity across the treatment volume. MATERIAL AND METHODS: Proton beams of ranges 11.6 cm and 16 cm are used for the spine and the brain fields, respectively. Beam profiles for a 30 cm snout are first matched at the 50% level (hot match) on the computer. Feathering is simulated by shifting the dose profiles by a known distance two successive times to simulate a 2 × feathering scheme. The process is repeated for 2 mm and 4 mm gaps. Similar procedures are used to determine the dose profiles in the moving gap for a series of gap widths, 0-10 mm, and feathering step sizes, 4-10 mm, for a Varian iX 6MV beam. The proton and photon dose profiles in the moving gap region are compared. RESULTS: The dose profiles in the moving gap exhibit valleys and peaks in both proton and photon beam CSI. The dose in the moving gap for protons is around 100% or higher for 0 mm gap, for both 5 and 10 mm feathering step sizes. When the field gap is comparable or larger than the penumbra, dose minima as low as 66% is obtained. The dosimetric characteristics for 6 MV photon beams can be made similar to those of the protons by appropriately combining gap width and feathering step size. CONCLUSION: The dose in the moving gap region is determined by the lateral penumbras, the width of the gap and the feathering step size. The dose decreases with increasing gap width or decreasing feathering step size. The dosimetric characteristics are similar for photon and proton beams. However, proton CSI has virtually no exit dose and is beneficial for pediatric patients, whereas with photon beams the whole lung and abdomen receive non-negligible exit dose.


Asunto(s)
Irradiación Craneoespinal/métodos , Fotones/uso terapéutico , Terapia de Protones , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador , Encéfalo/patología , Encéfalo/fisiología , Niño , Irradiación Craneoespinal/efectos adversos , Relación Dosis-Respuesta en la Radiación , Humanos , Movimiento (Física) , Órganos en Riesgo/patología , Terapia de Protones/efectos adversos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Columna Vertebral/patología , Columna Vertebral/fisiología , Tórax/patología
4.
J Appl Clin Med Phys ; 14(1): 3993, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23318385

RESUMEN

The use of rectal balloon in radiotherapy of prostate cancer is shown to be effective in reducing prostate motion and minimizing rectal volume, thus reducing rectal toxicity. Air-filled rectal balloon has been used most commonly, but creates dose perturbation at the air-tissue interface. In this study, we evaluate the effects of rectal balloon-filling materials on the dose distribution to the target and organs at risk. The dosimetric impact of rectal balloon filling was studied in detail for a typical prostate patient, and the general effect of the balloon filling was investigated from a study of ten prostate patients covering a wide range of anterior-posterior and left-right separations, as well as rectal and bladder volumes. Hounsfield units (HU) of the rectal balloon filling was changed from -1000 HU to 1000 HU at an interval of 250 HU, and the corresponding changes in the relative electron density (RED) was calculated. For each of the HU of the rectal balloon filling, a seven-field IMRT plan was generated with 6 MV and 15 MV photon beams, respectively. Dosimetric evaluation was performed with the AAA algorithm for inhomogeneity corrections. A detailed study of the rectal balloon filling shows that the GTV, PTV, rectal, and bladder mean dose decreased with increasing values of RED in the rectal balloon. There is significant underdosage in the target volume at the rectum-prostate interface with an air-filled balloon as compared to that with a water-filled balloon for both 6 MV and 15 MV beams. While the dosimetric effect of the rectal balloon filling is reduced when averaged over ten patients, generally an air-filled balloon results in lower minimum dose and lower mean dose in the overlap region (and possibly the PTV) compared to those produced by water-filled or contrast-filled balloons. Dose inhomogeneity in the target volume is increased with an air-filled rectal balloon. Thus a water-filled or contrast-filled rectal balloon is preferred to an air-filled rectal balloon in EBRT of prostate treatment.


Asunto(s)
Artefactos , Catéteres , Órganos en Riesgo/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Radiometría/métodos , Radioterapia Conformacional/métodos , Recto , Humanos , Masculino , Fotones/uso terapéutico , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
J Appl Clin Med Phys ; 13(2): 3631, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22402381

RESUMEN

The purpose of this study was to devise a simple semi-empirical model to estimate the range shift in clinical practices with high-Z inhomogeneity in proton beam. A semi-empirical model utilizing the logarithmic dependence on Z in stopping power from Bohr's classical approach has been developed to calculate the range shift due to the presence of inhomogeneity. Range shift from metallic plates of atomic number Z of various thicknesses were measured in water using a parallel plate ionization chamber and calculated with the FLUKA Monte Carlo code. The proton range shifts for bone and polymethyl methacrylate (PMMA) were estimated using the semi-empirical model and compared with Monte Carlo calculation. The semi-empirical equation to determine range shift and water equivalent thickness is presented. The model predicts a shift of the therapeutic range to within 2.5% accuracy for initial proton energies of 50 to 250 MeV and atomic numbers from 3.3 (effective Z for water) to 82. This equation is independent of beam energy, and thus provides range shift from high-Z materials without the knowledge of proton energy. The proposed method of calculating the therapeutic range shift accurately requires only knowledge of the effective or actual atomic number of the inhomogeneity and the thickness of the inhomogeneity along the beam direction. The model generalizes the range shift calculation for any material based on its effective atomic number, and permits reliable prediction of the range shift for material combinations where no data is currently available. The proposed model can be readily implemented in routine clinical practice for proton range shift estimation and quality assurance on the treatment planning.


Asunto(s)
Neoplasias Óseas/radioterapia , Modelos Teóricos , Método de Montecarlo , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Agua/química , Algoritmos , Simulación por Computador , Humanos , Fantasmas de Imagen , Radioterapia de Alta Energía
6.
Phys Med ; 95: 148-155, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35182937

RESUMEN

PURPOSE: A multi-institutional investigation for dosimetric evaluation of high-Z hip prosthetic device in photon beam. METHODS: A bilateral hip prosthetic case was chosen. An in-house phantom was built to replicate the human pelvis with two different prostheses. Dosimetric parameters: dose to the target and organs at risk (OARs) were compared for the clinical case generated by various treatment planning system (TPS) with varied algorithms. Single beam plans with different TPS for phantom using 6 MV and 15 MV photon beams with and without density correction were compared with measurement. RESULTS: Wide variations in target and OAR dosimetry were recorded for different TPS. For clinical case ideal PTV coverage was noted for plans generated with Corvus and Prowess TPS only. However, none of the TPS were able to meet plan objective for the bladder. Good correlation was noticed for the measured and the Pinnacle TPS for corrected dose calculation at the interfaces as well as the dose ratio in elsewhere. On comparing measured and calculated dose, the difference across the TPS varied from -20% to 60% for 6 MV and 3% to 50% for the 15 MV, respectively. CONCLUSION: Most TPS do not provide accurate dosimetry with high-Z prosthesis. It is important to check the TPS under extreme conditions of beams passing through the high-Z region. Metal artifact reduction algorithms may reduce the difference between the measured and calculated dose but still significant differences exist. Further studies are required to validate the calculational accuracy.


Asunto(s)
Prótesis de Cadera , Radioterapia de Intensidad Modulada , Algoritmos , Humanos , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
7.
Med Phys ; 38(12): 6395-406, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22149823

RESUMEN

PURPOSE: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. METHODS: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H∗(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. RESULTS: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H∗(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 × 104 Bq cm(-3) at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 × 106 Bq cm(-3) after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase due to (179)Ta with a half-life of 1.82 yr and thus require prolonged storage for activity cooling. The H∗(10) near the patient side of the tungsten block is about 100 µSv/h and is 27 times higher at the upstream side of the block. This would lead to an accumulated dose for therapists in a year that may exceed occupational maximum permissible dose (50 mSv/yr). The value of H∗(10) at the upstream surface of the tungsten block is about 220 times higher than that of the brass. CONCLUSIONS: MLC is an efficient way for beam shaping and overall cost reduction device in proton therapy. However, based on this study, tungsten seems to be not an optimal material for MLC in proton beam therapy. Usage of tungsten MLC in clinic may create unnecessary risks associated with the secondary neutrons and induced radioactivity for patients and staff depending on the patient load. A careful selection of material for manufacturing of an optimal MLC for proton therapy is thus desired.


Asunto(s)
Neoplasias/radioterapia , Terapia de Protones , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Dosificación Radioterapéutica
8.
Med Phys ; 38(8): 4655-61, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21928638

RESUMEN

PURPOSE: The output of a proton beam is affected by proton energy, Spread-Out Bragg Peak (SOBP) width, aperture size, dose rate, and the point of measurement. In a uniform scanning proton beam (USPB), the scanning field size is adjusted (including the vertical length and the horizontal width) according to the treatment field size with appropriate margins to reduce secondary neutron production. Different scanning field settings result in beam output variations that are investigated in this study. METHODS: The measurements are performed with a parallel plate Markus chamber at the center of SOBP under the reference condition with 16 cm range, 10 cm SOBP, and 5 cm air gap. The effect of dose rate on field output is studied by varying proton beam current from 0.5 to 7 nA. The effects of scanning field settings are studied by varying independently the field width and length from 12 x 12 to 30 x 30 cm2. RESULTS: The results demonstrate that scanning field variations can produce output variation up to 3.80%. In addition, larger output variation is observed with scanning field changes along the stem direction of the patient dose monitor (PDM). By investigating the underlying physics of incomplete charge collection and the stem effects of the PDM, an analytical model is proposed to calculate USPB output with consideration of the scanning field area and the PDM stem length that is irradiated. The average absolute difference between the measured output and calculated output using our new correction model are within 0.13 and 0.08% for the 20 and 30 cm snouts, respectively. CONCLUSIONS: This study proposes a correction model for accurate USPB output calculation, which takes account of scanning field settings and the PDM stem effects. This model may be used to extend the existing output calculation model from one snout size to other snout sizes with customized scanning field settings. The study is especially useful for calculating field output for treatment without individualized patient specific measurements.


Asunto(s)
Terapia de Protones , Radioterapia Conformacional/estadística & datos numéricos , Fenómenos Biofísicos , Humanos , Fantasmas de Imagen , Radiometría/instrumentación , Radiometría/estadística & datos numéricos , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos
9.
J Appl Clin Med Phys ; 12(2): 3350, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21587179

RESUMEN

Electronic portal imaging device (EPID) plays an important role in radiation therapy portal imaging, geometric and dosimetric verification. Consistent image quality and stable radiation response is necessary for proper utilization that requires routine quality assurance (QA). A commercial 'EPID QC' phantom weighing 3.8 kg with a dimension of 25 × 25 × 4.8 cm³ is used for EPID QA. This device has five essential tools to measure the geometric accuracy, signal-to-noise ratio (SNR), dose linearity, and the low- and the high-contrast resolutions. It is aligned with beam divergence to measure the imaging and geometric parameters in both X and Y directions, and can be used as a baseline check for routine QA. The low-contrast tool consists of a series of holes with various diameters and depths in an aluminum slab, very similar to the Las Vegas phantom. The high-resolution contrast tool provides the modulation transfer function (MTF) in both the x- and y-dimensions to measure the focal spot of linear accelerator that is important for imaging and small field dosimetry. The device is tested in different institutions with various amorphous silicon imagers including Elekta, Siemens and Varian units. Images of the QA phantom were acquired at 95.2 cm source-skin-distance (SSD) in the range 1-15MU for a 26 × 26 cm² field and phantom surface is set normal to the beam direction when gantry is at 0° and 90°. The epidSoft is a software program provided with the EPID QA phantom for analysis of the data. The preliminary results using the phantom on the tested EPID showed very good low-contrast resolution and high resolution, and an MTF (0.5) in the range of 0.3-0.4 lp/mm. All imagers also exhibit satisfactory geometric accuracy, dose linearity and SNR, and are independent of MU and spatial orientations. The epidSoft maintains an image analysis record and provides a graph of the temporal variations in imaging parameters. In conclusion, this device is simple to use and provides testing on basic and advanced imaging parameters for daily QA on any imager used in clinical practices.


Asunto(s)
Aceleradores de Partículas/instrumentación , Radiometría/instrumentación , Algoritmos , Cobre , Diseño de Equipo , Humanos , Ensayo de Materiales , Modelos Estadísticos , Fantasmas de Imagen , Control de Calidad , Monitoreo de Radiación/métodos , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Silicio/química
10.
Med Phys ; 48(10): e886-e921, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34101836

RESUMEN

Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.


Asunto(s)
Fotones , Radiometría , Agencias Internacionales , Fantasmas de Imagen
11.
Med Phys ; 37(8): 4266-73, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20879587

RESUMEN

PURPOSE: Entrance dose (or skin dose) is an important part of patient quality assurance in external beam radiation therapy. However, entrance dose verification in proton beam is not routinely performed. In this study, the OneDose single use MOSFET detector system for in vivo dosimetry measurement in proton therapy is investigated. METHODS: Using a solid water phantom, several fundamental dosimetric characteristics of the OneDose system are studied with a proton beam: The reproducibility (consistency) of the dosimeter, the linearity with dose and dose rate, energy dependence, directional dependence, LET dependence, and fading (delay readout with time) is studied. RESULTS: OneDose detectors show dose and dose rate linearity but exhibit pronounced energy dependence at depth and a large variation in dose response with LET. On the other hand, the detector response remain relatively constant (within 3%) at surface over a wide range of energies. There is also a slight angular dependence (about 2%) up to 60 degrees angle of incidence. However, detector orientation such that incidence along the long axis of the detector should be avoided as the proton beam will have to traverse a large amount of the copper backing. Since most in vivo dosimetry involves entrance dose measurement, the OneDose at surface appears to be well suited for such application. OneDose exhibits small intrabatch variation (< or = 2% at one SD) indicating that it is only necessary to calibration a few detectors from each batch. The interbatch variation is generally within 3%. CONCLUSIONS: The small detector size and its relatively flexible design of OneDose allow dose measurement to be performed on a curved surface or in small cavities that is otherwise difficult with the conventional diode detectors. The slight drawback in its angular dependence can be easily handled by angular dependence table. However, since OneDose is a single use detector, the intra-batch consistency must be verified before the remaining detectors from the same batch could be used for in vivo dosimetry. It is advisable that the detectors from the same batch be taken for the same application to reduce the dosimetric uncertainty. For detectors from different batches, inter-batch consistency should also be verified to obtain reliable results. OneDose provides an opportunity to measure in vivo dose with proton beam within acceptable clinical criterion of +/- (5.0%-6.5%).


Asunto(s)
Equipos Desechables , Radiometría/instrumentación , Radioterapia Conformacional/métodos , Transistores Electrónicos , Diseño de Equipo , Análisis de Falla de Equipo , Terapia de Protones , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Biomed Phys Eng Express ; 6(6)2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34035189

RESUMEN

Proton beam treatment is being looked favourably now in breast treatment. Tissue expanders are often placed after mastectomy that contains metallic port for saline injection which produces dose perturbations in proton beam therapy with uncertain dosimetry. Dose perturbation for a stainless-steel injection port from a breast implant is investigated in this study. Measurements, Monte-Carlo simulation, and calculated dose distribution of plans based on kVCT and MVCT images are compared. Treatment plans are performed on kVCT and MVCT images to observe the effect of metal artifact from the breast implant. The kVCT based plan underestimates the beam range due to the overestimated water equivalent thickness of the metal ports as a result of image degradation. Compared to the measurement with metal port in the proton beam, the MVCT-based treatment planning provides more accurate dose calculation than the kVCT-based results. The dose perturbation factor calculated from MVCT planning is within 10% of the measurement results while HU corrected kVCT plan still shows dose difference as large as 100% due to the incorrect range pull back calculation caused by the misrepresentation of the volume between the plastic cap and the stainless-steel base. The dose enhancement observed at the metal and solid water interface is as large as 15%, which needs to be accounted for in the planning process if there is a clinical concern. Dose reduction as large as 16% is observed with depth from 1 cm to 4 cm underneath the thickest part of the metallic port whereas lateral dose perturbation is also seen up to 7 mm. The measurement data are supported by the Monte-Carlo simulated results with a maximum dose difference of 6%. It is concluded that if proton beam is used with metallic port, MVCT imaging data is recommended. In lieu of MVCT, DECT, CT scanner with metal artifact reduction software or in the very least, extended HU range should be used to reduce the streaking artifact as well as to produce a more accurate image of the metallic port.


Asunto(s)
Neoplasias de la Mama , Terapia de Protones , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mastectomía , Fantasmas de Imagen , Terapia de Protones/efectos adversos , Protones , Planificación de la Radioterapia Asistida por Computador , Acero , Dispositivos de Expansión Tisular , Tomografía Computarizada por Rayos X , Agua
13.
BJR Case Rep ; 6(1): 20180125, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32201597

RESUMEN

Hepatocellular carcinoma (HCC) has become one of the leading causes of cancer death worldwide. There has been anecdotal report regarding the effectiveness of proton beam treatment for HCC. In this pre-clinical investigation, the woodchuck model of viral hepatitis infection-induced HCC was used for proton beam treatment experiment. The radiopaque fiducial markers that are biodegradable were injected around the tumor under ultrasound guidance to facilitate positioning in sequential treatments. An α cradle mode was used to ensure reproducibility of animal positioning on the treatment couch. A CT scan was performed first for contouring by a radiation oncologist. The CT data set with contours was then exported for dose planning. Three fractionations, each 750 CcGyE, were applied every other day with a Mevion S250 passive scattering proton therapy system. Multiphase contrast-enhanced CT scans were performed after the treatment and at later times for follow-ups. 3 weeks post-treatment, shrinking of the HCC nodule was detected and constituted to a partial response (30% reduction along the long axis). By week nine after treatment, the nodule disappeared during the arterial phase of multiphase contrast-enhanced CT scan. Pathological evaluation corroborated with this imaging response. A delayed, but complete imaging response to proton beam treatment applied to HCC was achieved with this unique and clinically relevant animal model of HCC.

14.
Am J Clin Oncol ; 43(3): 149-159, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028342

RESUMEN

AIM/OBJECTIVES/BACKGROUND: The American College of Radiology (ACR) and the American Society for Radiation Oncology (ASTRO) have jointly developed the following practice parameter for proton beam radiation therapy. Proton radiotherapy is the application of a high-energy proton beam to a patient in a clinical setting with therapeutic intent. Proton radiotherapy may permit improved therapeutic ratios with lower doses to sensitive normal structures and greater dose to target tumor tissues. METHODS: A literature search was performed to identify published articles regarding clinical outcomes, reviews, quality assurance methodologies, and guidelines and standards for proton radiation therapy. Selected articles are referenced in the text. The following recommendations are based on firsthand experiences of multiple clinical authorities who employ proton therapy and have been peer reviewed by experts at different practicing institutions. RESULTS: This practice parameter is developed to serve as a tool in the appropriate application of this evolving technology in the care of cancer patients or other patients with conditions where radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance standards, indications, and suggested documentation. CONCLUSIONS: This practice parameter is a tool to guide technical use of proton therapy and does not assess the relative clinical indication of proton radiotherapy when compared with other forms of radiotherapy, but to focus on the best practices required to deliver proton therapy safely and effectively, when clinically indicated. Costs of proton treatments are high, and the economic costs of proton radiotherapy may also need to be considered.


Asunto(s)
Neoplasias/radioterapia , Terapia de Protones/métodos , Terapia de Protones/normas , Humanos
15.
Med Phys ; 35(9): 4186-215, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18841871

RESUMEN

For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief.discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.


Asunto(s)
Aceleradores de Partículas , Fantasmas de Imagen , Humanos , Planificación de la Radioterapia Asistida por Computador
16.
Phys Med Biol ; 63(12): 125001, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29787382

RESUMEN

The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρ e), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.


Asunto(s)
Aprendizaje Automático , Tomografía Computarizada por Rayos X/métodos , Humanos , Fantasmas de Imagen
18.
Med Phys ; 34(8): 3149-57, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17879776

RESUMEN

In this study, zero-field percent depth dose (PDD) and tissue maximum ratio (TMR) for 6 MV x rays have been determined by extrapolation from dosimetric measurements over the field size range 1 x 1-10 x 10 cm2. The key to small field dosimetry is the selection of a proper dosimeter for the measurements, as well as the alignment of the detector with the central axis (CAX) of beam. The measured PDD results are compared with those obtained from Monte Carlo (MC) simulation to examine the consistency and integrity of the measured data from which the zero-field PDD is extrapolated. Of the six most commonly used dosimeters in the clinic, the stereotactic diode field detector (SFD), the PTW Pinpoint, and the Exradin A14 are the most consistent and produce results within 2% of each other over the entire field size range 1 x 1-40 x 40 cm2. Although the diamond detector has the smallest sensitive volume, it is the least stable and tends to disagree with all other dosimeters by more than 10%. The zero-field PDD data extrapolated from larger field measurements obtained with the SFD are in good agreement with the MC results. The extrapolated and MC data agree within 2.5% over the clinical depth range (dmax-30 cm), when the MC data for the zero field are derived from a 1 X 1 cm2 field simulation using a miniphantom (1 x 1 x 48 cm3). The agreement between the measured PDD and the MC data based on a full phantom (48 x 48 x 48 cm3) simulation is fairly good within 1% at shallow depths to approximately 5% at 30 cm. Our results seem to indicate that zero-field TMR can be accurately calculated from PDD measurements with a proper choice of detector and a careful alignment of detector axis with the CAX.


Asunto(s)
Radiometría/métodos , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Método de Montecarlo , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados
19.
Pract Radiat Oncol ; 7(3): 209-217, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27847266

RESUMEN

PURPOSE: Small-volume structures usually found in the head and neck may be susceptible to dose-volume averaging, which has not been studied. Here, the impact of calculation grid size on dose distribution for tumor control probability (TCP) and normal tissue complication probability (NTCP) is investigated for head and neck (H&N) intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS: IMRT plans were generated for H&N patients with different grid sizes (1-5 mm) to calculate dose and related TCP and NTCP. Dose parameters such as D2%, D50%, D98%, and the homogeneity and conformity indices were calculated. The dose distributions were also compared with measured dose for all IMRT plans. A 1-tailed pair t test was used to analyze the data. RESULTS: The mean dose to planning target volume and TCP decreases with increasing grid size, whereas for organs at risk (OARs), mean dose, and NTCP increase with increasing grid size. The average mean dose to planning target volume decreases linearly with grid size, but for OARs such as cochlea, parotid gland, and the spinal cord, mean dose increases with grid size. IMRT dose verification showed that the number of points meeting the gamma criterion of 3%/3 mm increased with decreasing grid sizes. The homogeneity index for the target increased up to 60% and conformity index decreased on average by 3.5% between 1- to 5-mm grid that resulted in decreased TCP and increased NTCP. A 1-tailed pair t test showed significant statistical differences among various grid size calculations compared with 1-mm grids. CONCLUSIONS: Based on our findings, the smallest possible grid size should be used for accurate dose calculation in small-volume structures-especially in H&N planning. A smaller calculation grid provides superior dosimetry with improved TCP as well as reduced NTCP, which is more pronounced for smaller OARs.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos
20.
Med Phys ; 44(7): 3815-3820, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28398596

RESUMEN

PURPOSE: The purpose of this study was to evaluate a plastic scintillation detector for the measurement of small field dosimetry and to verify the accuracy of measured dose in comparison with Monte Carlo calculation in a heterogeneous medium. METHODS: The study is performed with CyberKnife planning and delivery system. The setup consists of a custom made solid lung phantom with the insert of an Exradin W1 scintillation detector or an Exradin A16 ion chamber. The measurement was done for a series of cone sizes from 5 mm to 60 mm, and the dose was calculated by Monte Carlo algorithm in MultiPlan workstation. The difference between measurement and calculation was reported. RESULTS: Our preliminary results demonstrated the applicability of plastic scintillation detectors in the measurement of small field dosimetry in a heterogeneous medium. The difference between the calculated and measured output factors was less than 3% for all cone sizes from 60 mm down to 5 mm. Without any corrections, the measured dose from the scintillation detector calibrated to the ion chamber reading was also within 3% of the Monte Carlo calculation in the lung phantom for cone sizes 20 mm or larger. CONCLUSIONS: Small field dosimetry is particularly relevant to stereotactic radiation treatment. The accuracy of dose calculation for small static beams is critical to dose planning so would potentially affect the treatment outcomes in a heterogeneous medium. Our results have shown good agreement with plastic scintillation detector in both homogeneous and heterogeneous medium.


Asunto(s)
Plásticos , Radiometría , Humanos , Método de Montecarlo , Fantasmas de Imagen , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA