Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 627(8004): 534-539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448599

RESUMEN

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb1-3. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Pérot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc Hz-1 at 100 Hz offset frequency that decreases to -135 dBc Hz-1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.

2.
Opt Lett ; 47(7): 1855-1858, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363753

RESUMEN

We demonstrate 0.034 dB/m loss waveguides in a 200-mm wafer-scale, silicon nitride (Si3N4) CMOS-foundry-compatible integration platform. We fabricate resonators that measure up to a 720 million intrinsic Q resonator at 1615 nm wavelength with a 258 kHz intrinsic linewidth. This resonator is used to realize a Brillouin laser with an energy-efficient 380 µW threshold power. The performance is achieved by reducing scattering losses through a combination of single-mode TM waveguide design and an etched blanket-layer low-pressure chemical vapor deposition (LPCVD) 80 nm Si3N4 waveguide core combined with thermal oxide lower and tetraethoxysilane plasma-enhanced chemical vapor deposition (TEOS-PECVD) upper oxide cladding. This level of performance will enable photon preservation and energy-efficient generation of the spectrally pure light needed for photonic integration of a wide range of future precision scientific applications, including quantum, precision metrology, and optical atomic clocks.

3.
J Sports Sci ; 40(18): 2072-2084, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36306377

RESUMEN

The ground reaction force (GRF) is known to produce tibial internal rotation loading associated with the stress in the anterior cruciate ligament (ACL). However, it is unclear whether the friction moment (FM; the moment due to horizontal shoe-floor friction, acting around the vertical axis at the GRF acting point) facilitates or restrains the effect of GRF-driven tibial rotation loading during cutting. The 45° cutting motions with forefoot/rearfoot strikes were captured simultaneously with GRF and FM data from 23 healthy males. The FM- and GRF-driven tibial rotation moments were calculated. Time-series correlation between FM- and GRF-driven tibial rotation moments and the orientation relationship among those moment vectors was investigated. The FM-driven tibial rotation moment negatively correlated with the GRF-driven one within the first 10% of stance phase. The peak regression slope value was -0.34 [SD 0.33] for forefoot and -1.64 [SD 1.76] for rearfoot strikes, showing significant difference from zero (SPM one-sample t-test, p<0.05). The FM-driven tibial "external" rotation moment counteracted the GRF-driven tibial "internal" rotation moment within first 10% of the stance phase in most trials, suggesting that the FM-driven tibial rotation moment potentially diminishes the effect of GRF-driven one and may reduce ACL injury risk during cutting.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Articulación de la Rodilla , Humanos , Masculino , Fricción , Fenómenos Biomecánicos , Ligamento Cruzado Anterior , Tibia , Atletas
4.
J Agric Food Chem ; 72(2): 1228-1243, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38181223

RESUMEN

It is widely accepted that prevéraison application of naphthaleneacetic acid (NAA) can delay the ripening of grapes and improve their quality. However, how NAA impacts grape aroma compound concentrations remains unclear. This study incorporated the analyses of aroma metabolome, phytohormones, and transcriptome of Vitis vinifera L. cv. Cabernet Sauvignon grapes cultivated in continental arid/semiarid regions of western China. The analyses demonstrated that NAA application increased ß-damascenone and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in the harvested grapes by delaying véraison and upregulating VvPSY1 and VvCCD4b expressions. Additionally, NAA treatment decreased 2-isobutyl-3-methoxypyrazine (IBMP) at the same phenological stage. Notably, abscisic acid (ABA) levels increased in NAA-treated grapes during véraison, which triggered further changes in norisoprenoid metabolisms. The ABA-responsive factor VvABF2 was potentially involved in VvPSY1 positive modulation, while the auxin response factor VvARF10 may play a role in VvCCD4b upregulation and VvOMT2 downregulation during NAA induction. VvARF10 possibly acts as a crosstalk node between the ABA and auxin signaling pathways following NAA treatment in regulating aroma biosynthesis.


Asunto(s)
Vitis , Vino , Ácido Abscísico/metabolismo , Vitis/genética , Vitis/metabolismo , Ácidos Indolacéticos/metabolismo , Odorantes/análisis , Transcriptoma , Frutas/química , Metaboloma , Ácidos Naftalenoacéticos/análisis , Vino/análisis
5.
Nat Commun ; 15(1): 6796, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122672

RESUMEN

New strategies for converting signals between optical and microwave domains could play a pivotal role in advancing both classical and quantum technologies. Traditional approaches to optical-to-microwave transduction typically perturb or destroy the information encoded on intensity of the light field, eliminating the possibility for further processing or distribution of these signals. In this paper, we introduce an optical-to-microwave conversion method that allows for both detection and spectral analysis of microwave photonic signals without degradation of their information content. This functionality is demonstrated using an optomechanical waveguide integrated with a piezoelectric transducer. Efficient electromechanical and optomechanical coupling within this system permits bidirectional optical-to-microwave conversion with a quantum efficiency of up to -54.16 dB. Leveraging the preservation of the optical field envelope in intramodal Brillouin scattering, we demonstrate a multi-channel microwave photonic filter by transmitting an optical signal through a series of electro-optomechanical waveguide segments, each with distinct resonance frequencies. Such electro-optomechanical systems could offer flexible strategies for remote sensing, channelization, and spectrum analysis in microwave photonics.

6.
Foods ; 11(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35563903

RESUMEN

During the storage of wines in bottles, especially white wines, tartrate crystallization often occurs, which reduces the commercial value of the wines and therefore needs to be avoided by performing cold stabilization treatments before bottling. However, whether different cold treatment durations impact the quality of a wine's aroma has not yet been of special concern. This research was conducted at an industrial scale to explore how cold treatments at -5.3 °C for 10 to 15 days impact the organic acids, aroma compounds, and sensory quality of Riesling dry white wines, and the variation was documented at the end of treatment, and at 6 and 12 months of bottle storage. The results showed that cold treatments significantly reduced tartaric acid concentrations and significantly affected the concentrations of most aroma components in the wines only after 12 months of bottle storage, including the main components of esters, norisoprenoids, terpenoids, and furfural. Moreover, the concentrations of some components showed an increasing trend with the bottle storage, especially 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), the characteristic volatile of Riesling wine, suggesting that an acidic condition resulting from cold treatment might facilitate the conversion of some aroma precursors into volatiles. In conclusion, cold stabilization treatments, within limits, can improve tartaric acid stability and could promote the conservation of aroma compounds during bottle storage without adversely affecting the aroma profile of the wines.

7.
J Biomech ; 136: 111056, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398559

RESUMEN

Anterior cruciate ligament (ACL) injury occurs soon after foot-strike. Cutting with a shallow flexed knee is considered a risk factor for ACL injury; however, how foot-strike patterns (forefoot strike [FFS] vs. rearfoot strike [RFS]) affect sagittal plane knee kinetics and kinematics after a foot-strike, is unknown. This study aimed to investigate the effect of foot-strike patterns on the sagittal plane knee kinetics and kinematics during cutting. Twenty-three males performed 45° cutting under RFS and FFS conditions. The marker position data on the lower limb, and the ground reaction force (GRF) data were collected and time-normalized (0-100%) during the stance phase. The knee flexion angle, shank and GRF vector inclination angle relative to the global vertical axis, knee flexion/extension moment, and anterior/posterior component of GRF relative to the shank segment were calculated and compared between foot-strike patterns using statistical parametric mapping paired t-test (p < 0.0071). The knee flexion angle was smaller in RFS than in FFS in the initial 40% of the stance phase. In the RFS condition, the GRF vector was directed anteriorly to the shank segment, and the knee extension moment was produced by GRF in 0-7% of the stance phase, while these results were not observed in the FFS condition. These results suggest that compared to FFS, RFS induces a shallow flexed knee with an anterior-directed GRF component in the early stance phase and might potentially provoke a risk of ACL injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Carrera , Fenómenos Biomecánicos , Pie , Humanos , Cinética , Articulación de la Rodilla , Masculino , Carrera/lesiones
8.
Nat Commun ; 12(1): 934, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568661

RESUMEN

High quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. Integration in a photonic waveguide platform is key to reducing cost, size, power and sensitivity to environmental disturbances. However, to date, the Q of all-waveguide resonators has been relegated to below 260 Million. Here, we report a Si3N4 resonator with 422 Million intrinsic and 3.4 Billion absorption-limited Qs. The resonator has 453 kHz intrinsic, 906 kHz loaded, and 57 kHz absorption-limited linewidths and the corresponding 0.060 dB m-1 loss is the lowest reported to date for waveguides with deposited oxide upper cladding. These results are achieved through a careful reduction of scattering and absorption losses that we simulate, quantify and correlate to measurements. This advancement in waveguide resonator technology paves the way to all-waveguide Billion Q cavities for applications including nonlinear optics, atomic clocks, quantum photonics and high-capacity fiber communications.

9.
Eur J Pharmacol ; 840: 33-43, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30268666

RESUMEN

Oxidative stress is the major cause of renal fibrosis in the progression of DN. Connexin43 (Cx43) exerts an anti-fibrosis effect on diabetic kidneys. The current study aimed to investigate whether astaxanthin (AST) could ameliorate the pathological progression of DN by upregulating Cx43 and activating the Nrf2/ARE signaling, which is a pivotal anti-oxidative stress system, to strengthen the cellular anti-oxidative capacity and diminish fibronectin (FN) accumulation in HG-induced glomerular mesangial cells (GMCs). Our hypothesis was verified in GMCs and the kidneys from db/db mice by western blot, immunofluorescence, immunohistochemistry, immunoprecipitation, dual luciferase reporter assay and reactive oxygen related detection kits. Results showed that AST simultaneously upregulated the Cx43 protein level and promoted the Nrf2/ARE signaling activity in the kidney of db/db mice and HG-treated GMCs. However, Cx43 depletion abrogated the Nrf2/ARE signaling activation induced by AST. AST reduced the interaction between c-Src and Nrf2 in the nuclei of GMCs cultured with HG, thereby enhancing the Nrf2 accumulation in the nuclei of GMCs. Our data suggested that AST promoted the Nrf2/ARE signaling by upregulating the Cx43 protein level to prevent renal fibrosis triggered by HG in GMCs and db/db mice. c-Src acted as a mediator in these processes.


Asunto(s)
Conexina 43/metabolismo , Diabetes Mellitus Experimental/patología , Fibronectinas/metabolismo , Células Mesangiales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Proteína Tirosina Quinasa CSK , Diabetes Mellitus Experimental/metabolismo , Femenino , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Xantófilas/farmacología , Familia-src Quinasas/metabolismo
10.
Adv Mater ; : e1801908, 2018 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-29984556

RESUMEN

Transition metal dichalcogenides with intrinsic spin-valley degrees of freedom hold great potentials for applications in spintronic and valleytronic devices. MoS2 monolayer possesses two inequivalent valleys in the Brillouin zone, with each valley coupling selectively with circularly polarized photons. The degree of valley polarization (DVP) is a parameter to characterize the purity of valley-polarized photoluminescence (PL) of MoS2 monolayer. Usually, the detected values of DVP in MoS2 monolayer show achiral property under optical excitation of opposite helicities due to reciprocal phonon-assisted intervalley scattering process. Here, it is reported that valley-polarized PL of MoS2 can be tailored through near-field interaction with plasmonic chiral metasurface. The resonant field of the chiral metasurface couples with valley-polarized excitons, and tailors the measured PL spectra in the far-field, resulting in observation of chiral DVP of MoS2 -metasurface under opposite helicities excitations. Valley-contrast PL in the chiral heterostructure is also observed when illuminated by linearly polarized light. The manipulation of valley-polarized PL in 2D materials using chiral metasurface represents a viable route toward valley-polaritonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA