Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 840
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 116(4): 1018-1029, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37310261

RESUMEN

Horticultural plants contribute immensely to the quality of human's life. The rapid development of omics studies on horticultural plants has resulted in large volumes of valuable growth- and development-related data. Genes that are essential for growth and development are highly conserved in evolution. Cross-species data mining reduces the impact of species heterogeneity and has been extensively used for conserved gene identification. Owing to the lack of a comprehensive database for cross-species data mining using multi-omics data from all horticultural plant species, the current resources in this field are far from satisfactory. Here, we introduce GERDH (https://dphdatabase.com), a database platform for cross-species data mining among horticultural plants, based on 12 961 uniformly processed publicly available omics libraries from more than 150 horticultural plant accessions, including fruits, vegetables and ornamental plants. Important and conserved genes that are essential for a specific biological process can be obtained by cross-species analysis module with interactive web-based data analysis and visualization. Moreover, GERDH is equipped with seven online analysis tools, including gene expression, in-species analysis, epigenetic regulation, gene co-expression, enrichment/pathway and phylogenetic analysis. By interactive cross-species analysis, we identified key genes contributing to postharvest storage. By gene expression analysis, we explored new functions of CmEIN3 in flower development, which was validated by transgenic chrysanthemum analysis. We believe that GERDH will be a useful resource for key gene identification and will allow for omics big data to be more available and accessible to horticultural plant community members.


Asunto(s)
Epigénesis Genética , Multiómica , Humanos , Filogenia , Productos Agrícolas/genética , Bases de Datos Genéticas , Minería de Datos
2.
Plant J ; 116(6): 1652-1666, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37696505

RESUMEN

TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.


Asunto(s)
Chrysanthemum , Proteínas de Plantas , Factores de Transcripción , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/fisiología , Etilenos/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo
3.
Small ; : e2402523, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747010

RESUMEN

A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.

4.
Plant Physiol ; 193(4): 2413-2429, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37647542

RESUMEN

Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chrysanthemum , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Co-Represoras/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas
5.
Plant Physiol ; 191(3): 1492-1504, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36546733

RESUMEN

Deciduous woody plants like poplar (Populus spp.) have seasonal bud dormancy. It has been challenging to simultaneously delay the onset of bud dormancy in the fall and advance bud break in the spring, as bud dormancy, and bud break were thought to be controlled by different genetic factors. Here, we demonstrate that heterologous expression of the REVEILLE1 gene (named AaRVE1) from Agave (Agave americana) not only delays the onset of bud dormancy but also accelerates bud break in poplar in field trials. AaRVE1 heterologous expression increases poplar biomass yield by 166% in the greenhouse. Furthermore, we reveal that heterologous expression of AaRVE1 increases cytokinin contents, represses multiple dormancy-related genes, and up-regulates bud break-related genes, and that AaRVE1 functions as a transcriptional repressor and regulates the activity of the DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) promoter. Our findings demonstrate that AaRVE1 appears to function as a regulator of bud dormancy and bud break, which has important implications for extending the growing season of deciduous trees in frost-free temperate and subtropical regions to increase crop yield.


Asunto(s)
Agave , Populus , Proteínas de Plantas/metabolismo , Populus/metabolismo , Estaciones del Año , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Cell Environ ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629334

RESUMEN

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.

7.
Opt Express ; 32(1): 260-274, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175054

RESUMEN

We propose a theoretical project in which quantum squeezing induces quantum entanglement and Einstein-Podolsky-Rosen steering in a coupled whispering-gallery-mode optomechanical system. Through pumping the χ(2)-nonlinear resonator with the phase matching condition, the generated squeezed resonator mode and the mechanical mode of the optomechanical resonator can generate strong quantum entanglement and EPR steering, where the squeezing of the nonlinear resonator plays the vital role. The transitions from zero entanglement to strong entanglement and one-way steering to two-way steering can be realized by adjusting the system parameters appropriately. The photon-photon entanglement and steering between the two resonators can also be obtained by deducing the amplitude of the driving laser. Our project does not need an extraordinarily squeezed field, and it is convenient to manipulate and provides a novel and flexible avenue for diverse applications in quantum technology dependent on both optomechanical and photon-photon entanglement and steering.

8.
Opt Lett ; 49(7): 1640-1643, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560825

RESUMEN

The development of super-oscillatory lens (SOL) offers opportunities to realize far-field label-free super-resolution microscopy. Most microscopes based on a high numerical aperture (NA) SOL operate in the point-by-point scanning mode, resulting in a slow imaging speed. Here, we propose a high-NA metalens operating in the single-shot wide-field mode to achieve real-time super-resolution imaging. An optimization model based on the exhaustion algorithm and angular spectrum (AS) theory is developed for metalens design. We numerically demonstrate that the optimized metalens with an NA of 0.8 realizes the imaging resolution (imaging pixel size) about 0.85 times the Rayleigh criterion. The metalens can achieve super-resolution imaging of an object with over 200 pixels, which is one order of magnitude higher than the unoptimized metalens. Our method provides an avenue toward single-shot far-field label-free super-resolution imaging for applications such as real-time imaging of living cells and temporally moving particles.

9.
Phys Rev Lett ; 132(17): 177001, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728709

RESUMEN

Asymmetric transmission in a passive vortex system is highly desirable, as it enables the development of compact vortex-based devices. However, breaking the mirror symmetry of transmission via a single metasurface poses challenges due to the inherent symmetric transmission properties in reciprocity. Here, we theoretically propose and experimentally demonstrate a novel transmission-reflection phase coupling mechanism to achieve the broken mirror symmetry of sound vortex transmission. This mechanism establishes a special coupling link between transmission and reflection waves, superimposing asymmetric reflection phases on the transmission phases. By utilizing a single passive phase gradient metasurface with asymmetric reflection phase twists, distinct transmission phase twists for mirror-symmetric incident vortices can be achieved within a cylindrical waveguide. This is typically difficult to imple-ment in a reciprocal system. Numerical and experimental results both demonstrate the broken mirror symmetry of vortex transmission and reflection. Our findings offer a new strategy for controlling vortex wave propagation, which may inspire new directional applications and extend to the field of photonics.

10.
Phys Rev Lett ; 132(18): 183801, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759196

RESUMEN

Optical amplification and massive information transfer in modern physics depend on stimulated radiation. However, regardless of traditional macroscopic lasers or emerging micro- and nanolasers, the information modulations are generally outside the lasing cavities. On the other hand, bound states in the continuum (BICs) with inherently enormous Q factors are limited to zero-dimensional singularities in momentum space. Here, we propose the concept of spatial information lasing, whose lasing information entropy can be correspondingly controlled by near-field Bragg coupling of guided modes. This concept is verified in gain-loss metamaterials supporting full-k-space BICs with both flexible manipulations and strong confinement of light fields. The counterintuitive high-dimensional BICs exist in a continuous energy band, which provide a versatile platform to precisely control each lasing Fourier component and, thus, can directly convey rich spatial information on the compact size. Single-mode operation achieved in our scheme ensures consistent and stable lasing information. Our findings can be expanded to different wave systems and open new scenarios in informational coherent amplification and high-Q physical frameworks for both classical and quantum applications.

11.
Mol Divers ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683490

RESUMEN

18ß-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.

12.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783169

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Región CA1 Hipocampal , Regulación hacia Abajo , Plasticidad Neuronal , Neuronas , Complicaciones Cognitivas Postoperatorias , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Neuronas/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Región CA1 Hipocampal/metabolismo , Masculino , Ratones Endogámicos C57BL , Potenciación a Largo Plazo , Ácido Glutámico/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología
13.
Ecotoxicol Environ Saf ; 280: 116546, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843747

RESUMEN

In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18 ng/g, 0.52-3.52 ng/g, and 0.81-42.68 %, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.


Asunto(s)
Acuicultura , Minas de Carbón , Monitoreo del Ambiente , Peces , Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Compuestos de Metilmercurio/análisis , Animales , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Peces/metabolismo , China , Monitoreo del Ambiente/métodos
14.
Chem Biodivers ; 21(4): e202400135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425248

RESUMEN

Four series of novel pyridine derivatives (17 a-i, 18 a-i, 19 a-e, and 20 a-e) were synthesized and their antimicrobial activities were evaluated. Of all the target compounds, almost half target compounds showed moderate or high antibacterial activity. The 4-F substituted compound 17 d (MIC=0.5 µg/mL) showed the highest antibacterial activity, its activity was twice the positive control compound gatifloxacin (MIC=1.0 µg/mL). For fungus ATCC 9763, the activities of compounds 17 a and 17 d are equivalent to the positive control compound fluconazole (MIC=8 µg/mL). Furthermore, compounds 17 a and 17 d showed little cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration (200 µM). The results indicate that these compounds are valuable for further development as antibacterial and antifungal agents.


Asunto(s)
Tiadiazoles , Humanos , Tiadiazoles/farmacología , Antifúngicos/farmacología , Antibacterianos/farmacología , Hongos , Piridinas/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
15.
Arch Pharm (Weinheim) ; : e2400131, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678538

RESUMEN

Three series of N-{[4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl}acetamides (14a-d, 15a-n, and 16a-f) were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. The target compounds showed high ALK5 inhibitory activity and selectivity. The half maximal inhibitory concentration (IC50) for phosphorylation of ALK5 of 16f (9.1 nM), the most potent compound, was 2.7 times that of the clinical candidate EW-7197 (vactosertib) and 14 times that of the clinical candidate LY-2157299. The selectivity index of 16f against p38α mitogen-activated protein kinase was >109, which was much higher than that of positive controls (EW-7197: >41, and LY-2157299: 4). Furthermore, a molecular docking study provided the interaction modes between the target compounds and ALK5. Compounds 14c, 14d, and 16f effectively inhibited the protein expression of α-smooth muscle actin (α-SMA), collagen I, and tissue inhibitor of metalloproteinase 1 (TIMP-1)/matrix metalloproteinase 13 (MMP-13) in transforming growth factor-ß-induced human umbilical vein endothelial cells. Compounds 14c and 16f showed especially high activity at low concentrations, which suggests that these compounds could inhibit myocardial cell fibrosis. Compounds 14c, 14d, and 16f are potential preclinical candidates for the treatment of cardiac fibrosis.

16.
Nano Lett ; 23(9): 3921-3928, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37102437

RESUMEN

Twisted photons can in principle carry a discrete unbounded amount of orbital angular momentum (OAM), which are of great significance for quantum communication and fundamental tests of quantum theory. However, the methods for characterization of the OAM quantum states present a fundamental limit for miniaturization. Metasurfaces can exploit new degrees of freedom to manipulate optical fields beyond the capabilities of bulk optics, opening a broad range of novel and superior applications in quantum photonics. Here we present a scheme to reconstruct the density matrix of the OAM quantum states of single photons with all-dielectric metasurfaces composed of birefringent meta-atoms. We have also measured the Schmidt number of the OAM entanglement by the multiplexing of multiple degrees of freedom. Our work represents a step toward the practical application of quantum metadevices for the measurement of OAM quantum states in free-space quantum imaging and communications.

17.
J Environ Manage ; 354: 120436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394872

RESUMEN

Understanding the nitrogen and sulfur uptake strategies of mine plants, including sources and preferences for nitrogen forms (ammonium nitrogen (NH4+) vs nitrate nitrogen (NO3-)), is critical to improving understanding of the role of plants in participating in the biogeochemical cycles of nitrogen and sulfur in mining areas. In this study, the stable N and S isotopic compositions of two species of aquatic plants (calamus and reed) in Linhuan mining area were analyzed to determine their absorption strategies for different nitrogen and sulfur sources. The results showed that river water was the largest source of nitrogen and sulfur, contributing 54.6% and 53.9% respectively. NO3- is the main form of nitrogen uptake by reed and calamus, followed by NH4+. In order to adapt to the change of nitrogen form in the environment, reed and calamus tend to absorb and utilize NO3- to maintain their absorption of nitrogen. Mine effluents from mining activities provide at least 12.9% and 16.8% sulfate to reed and calamus respectively, and the effect of mine effluents on reed and calamus sulfur has been underestimated. This study reveals the key factors controlling plant isotope composition, and the use of nitrogen and sulfur isotope composition of aquatic plants can help quantify the level of influence of mining activities, and understand the biogeochemical cycle of nitrogen and sulfur in mining areas.


Asunto(s)
Nitrógeno , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/química , Minería , Nitratos/análisis , Azufre , Isótopos de Nitrógeno/análisis
18.
Plant Cell Environ ; 46(2): 440-450, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36367211

RESUMEN

Plants employ several endogenous and exogenous signals to guarantee timely floral transitions with floral integrators. To avoid premature flowering, flowering plants must control the balance between vegetative and floral development. As a Group II member of BBX family, CmBBX8 promotes flowering by directly activating CmFTL1 in summer-flowering chrysanthemum. However, the mechanisms underlying this floral transition is yet to be elucidated. Here, we report that the chrysanthemum ERF3 homologue, CmERF3, physically interacts with CmBBX8 through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), pull-down, and luciferase complementation (LCI) assays. We found that CmERF3 was highly expressed at the vegetative stage and rarely expressed in the reproductive phase, indicating that CmERF3 may play a critical role in maintaining vegetative growth to prevent premature flowering. Rhythm analysis revealed that CmERF3 had a different response to rhythm compared to CmBBX8. Knockdown of CmERF3 facilitated floral initiation, whereas overexpression of CmERF3 delayed floral transition. We further found that CmERF3 repressed the transactivation activity of CmBBX8 on the downstream CmFTL1 gene. Collectively, our results indicate that the CmERF3-CmBBX8 transcriptional complex is a crucial module that balances the vegetative growth and reproductive development of chrysanthemum.


Asunto(s)
Chrysanthemum , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo
19.
Ann Neurol ; 91(4): 466-482, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094435

RESUMEN

OBJECTIVE: Leigh syndrome (LS) is a heterogeneous neurodegenerative disease and the most frequent pediatric manifestation of mitochondrial disease. In the largest patient collection to date, this study aimed to provide new insights into the clinical and genetic spectrum of LS, defect-specific associations, and predictors of disease course and survival. METHODS: Clinical, metabolic, neuroimaging, onset, and survival data were collected from the medical records of 209 patients referred to the Beijing Children's Hospital with symmetrical basal ganglia and/or brainstem neuroimaging changes indicative of LS by 30 centers from the Chinese network of mitochondrial disease (mitoC-NET) between January 2013 and July 2021 for exploratory analysis. RESULTS: Pathogenic variants were identified in 52 genes, most frequently MT-ATP6, SURF1, and PDHA1. Maternally inherited variants accounted for 42% (heteroplasmy level ≥90% in 64%). Phenotypes spanned 92 Human Phenotype Ontology terms. Elevated serum lactate (144/195), global developmental delay (142/209), and developmental regression (103/209) were most frequent. Discriminating neuroimaging and/or clinical features were identified for MT-ATP6 (m.9176T>C), MT-ND5, PDHA1, SUCLG1, and SURF1. Poorest survival was associated with MT-ND5, MT-ATP6 (m.8993T>C and m.9176T>C), SURF1, and ALDH5A1 (≤50% 3 year's survival), in contrast to milder defects with specific treatment (ECHS1 and SLC19A3, 100% 3 year's survival). INTERPRETATION: Our data define phenotype, onset, and survival of LS in a defect-specific manner, identifying features discriminating between genetic defects and predictive of disease outcome. These findings are essential to early diagnosis, in optimizing family counseling, and to the design and monitoring of future clinical trials, the next frontier of LS research. ANN NEUROL 2022;91:466-482.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Niño , Hospitales , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Proteínas de Transporte de Membrana/genética , Enfermedades Mitocondriales/genética , Mutación/genética
20.
Opt Express ; 31(14): 22343-22357, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475347

RESUMEN

We propose a scheme to generate nonreciprocal photon blockade in a stationary whispering gallery microresonator system based on two physical mechanisms. One of the two mechanisms is inspired by recent work [Phys. Rev. Lett.128, 083604 (2022)10.1103/PhysRevLett.128.083604], where the quantum squeezing caused by parametric interaction not only shifts the optical frequency of propagating mode but also enhances its optomechanical coupling, resulting in a nonreciprocal conventional photon blockade phenomenon. On the other hand, we also give another mechanism to generate stronger nonreciprocity of photon correlation according to the destructive quantum interference. Comparing these two strategies, the required nonlinear strength of parametric interaction in the second one is smaller, and the broadband squeezed vacuum field used to eliminate thermalization noise is no longer needed. All analyses and optimal parameter relations are further verified by numerically simulating the quantum master equation. Our proposed scheme opens a new avenue for achieving the nonreciprocal single photon source without stringent requirements, which may have critical applications in quantum communication, quantum information processing, and topological photonics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA