Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant J ; 113(3): 521-535, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534067

RESUMEN

Male sterility provides an efficient approach for commercial exploitation of heterosis. Despite more than 20 genic male sterile (GMS) mutants documented in pepper (Capsicum annuum L.), only two causal genes have been successfully identified. Here, a novel spontaneous recessive GMS mutant, designated msc-3, is identified and characterized at both phenotypic and histological levels. Pollen abortion of msc-3 mutant may be due to the delayed tapetum degradation, leading to the non-degeneration of tetrads callosic wall. Then, a modified MutMap method and molecular marker linkage analysis were employed to fine mapping the msc-3 locus, which was delimited to the ~139.91-kb region harboring 10 annotated genes. Gene expression and structure variation analyses indicate the Capana10g000198, encoding a R2R3-MYB transcription factor, is the best candidate gene for the msc-3 locus. Expression profiling analysis shows the Capana10g000198 is an anther-specific gene, and a 163-bp insertion in the Capana10g000198 is highly correlated with the male sterile (MS) phenotype. Additionally, downregulation of Capana10g000198 in male fertile plants through virus-induced gene silencing resulted in male sterility. Finally, possible regulatory relationships of the msc-3 gene with the other two reported pepper GMS genes, msc-1 and msc-2, have been studied, and comparative transcriptome analysis reveals the expression of 16 GMS homologs are significantly downregulated in the MS anthers. Overall, our results reveal that Capana10g000198 is the causal gene underlying the msc-3 locus, providing important theoretical clues and basis for further in-depth study on the regulatory mechanisms of pollen development in pepper.


Asunto(s)
Capsicum , Infertilidad Vegetal , Masculino , Capsicum/genética , Capsicum/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Infertilidad Vegetal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Theor Appl Genet ; 137(5): 100, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602584

RESUMEN

Wax gourd (Benincasa hispida (Thunb.) Cogn., 2n = 2x = 24) is an economically important vegetable crop cultivated widely in many tropical and subtropical regions, including China, India, and Japan. Both fruit and seeds are prized agronomic attributes in wax gourd breeding and production. However, the genetic mechanisms underlying these traits remain largely unexplored. In this study, we observed a strong correlation between fruit size and seed size variation in our mapping population, indicating genetic control by a single gene, BhLS, with large size being dominant over small. Through bulk segregant analysis sequencing and fine mapping with a large F2 population, we precisely located the BhLS gene within a 47.098-kb physical interval on Chromosome 10. Within this interval, only one gene, Bhi10M000649, was identified, showing homology to Arabidopsis HOOKLESS1. A nonsynonymous mutation (G to C) in the second exon of Bhi10M000649 was found to be significantly associated with both fruit and seed size variation in wax gourd. These findings collectively highlight the pleiotropic effect of the BhLS gene in regulating fruit and seed size in wax gourd. Our results offer molecular insights into the variation of fruit and seed size in wax gourd and establish a fundamental framework for breeding wax gourd cultivars with desired traits.


Asunto(s)
Arabidopsis , Cucurbitaceae , Frutas/genética , Verduras , Fitomejoramiento , Semillas/genética , Aciltransferasas/genética , Mutación
3.
Theor Appl Genet ; 136(4): 81, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952023

RESUMEN

KEY MESSAGE: The Mcgy1 locus responsible for gynoecy was fine-mapped into a 296.94-kb region, in which four single-nucleotide variations and six genes adjacent to them might be associate with sex differentiation in bitter gourd. Gynoecy plays an important role in high-efficiency hybrid seed production, and gynoecious plants are excellent materials for dissecting sex differentiation in Cucurbitaceae crop species, including bitter gourd. However, the gene responsible for gynoecy in bitter gourd is unknown. Here, we first identified a gynoecy locus designated Mcgy1 using the F2 population (n = 291) crossed from the gynoecious line S156G and the monoecious line K8-201 via bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis. Then, a large S156G × K8-201 F2 population (n = 5,656) was used for fine-mapping to delimit the Mcgy1 locus into a 296.94-kb physical region on pseudochromosome MC01, where included 33 annotated genes different from any homologous gynoecy genes previously reported in Cucurbitaceae species. Within this region, four underlying single-nucleotide variations (SNVs) that might cause gynoecy were identified by multiple genomic sequence variation analysis, and their six neighbouring genes were considered as potential candidate genes for Mcgy1. Of these, only MC01g1681 showed a significant differential expression at two-leaf developmental stage between S156G and its monoecious near-isogenic line S156 based on RNA sequencing (RNA-seq) and qRT-PCR analyses. In addition, transcriptome analysis revealed 21 key differentially expressed genes (DEGs) and possible regulatory pathways of the formation of gynoecy in bitter gourd. Our findings provide a new clue for researching on gynoecious plants in Cucurbitaceae species and a theoretical basis for breeding gynoecious bitter gourd lines by the use of molecular markers-assisted selection.


Asunto(s)
Cucurbitaceae , Momordica charantia , Momordica charantia/genética , Fitomejoramiento , Cucurbitaceae/genética , Nucleótidos , Estudios de Asociación Genética
4.
Theor Appl Genet ; 136(5): 107, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037971

RESUMEN

KEY MESSAGE: The pepper S locus, which controls the deciduous character of ripe fruit, was first fine mapped into an interval with a physical length of ~ 38.03 kb on chromosome P10. Capana10g002229, encoding a polygalacturonase, was proposed as a strong candidate gene based on sequence comparison, expression pattern analysis and virus-induced gene silencing (VIGS). The deciduous character of ripe fruit, which is controlled by the dominant S locus, is a domesticated trait with potential value in the pepper processing industry (Capsicum spp.). However, the gene associated with the S locus has not been identified. Here, one major QTL designated S10.1 was detected by using the F2 population (n = 155) derived from BA3 (Capsicum annuum) × YNXML (Capsicum frutescens) and was further verified in an intraspecific backcross population (n = 254) derived from the cross between BB3 (C. annuum) and its wild relative Chiltepin (C. annuum var. glabriusculum) with BB3 as the recurrent parent. Then, a large BC1F2 population derived from the self-pollination of BB3 × (BB3 × Chiltepin) individuals and comprising 4217 individuals was used to screen the recombinants, and the S locus was ultimately delimited into a 38.03-kb region on chromosome P10 harbouring four annotated genes. Capana10g002229, encoding a polygalacturonase (PG), was proposed as the best candidate gene for S based on sequence comparison and expression pattern analyses. Downregulation of Capana10g002229 in fruits through VIGS significantly delayed fruit softening and abscission from the fruit-receptacle junction. Taken together, the results show that Capana10g002229 could be regarded as a strong candidate gene associated with the S locus in pepper. These findings not only lay a foundation for deciphering the molecular mechanisms underlying pepper domestication but also provide a strategy for genetic improvement of the deciduous character of ripe fruit using a marker-assisted selection approach.


Asunto(s)
Capsicum , Humanos , Capsicum/genética , Frutas/genética , Mapeo Cromosómico , Poligalacturonasa/genética , Genes de Plantas , Verduras/genética
5.
BMC Genomics ; 22(1): 190, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726664

RESUMEN

BACKGROUND: The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. RESULTS: Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines '47-2-1-1-3' and '04-17,' indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 '47-2-1-1-3' × '04-17' F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. CONCLUSIONS: This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd.


Asunto(s)
Momordica charantia , Ligamiento Genético , Genoma , Humanos , Mutación INDEL , Momordica charantia/genética , Análisis de Secuencia de ADN
6.
Theor Appl Genet ; 134(9): 2901-2911, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34076730

RESUMEN

KEY MESSAGE: The up locus determining fruit orientation was fine-mapped into a region with a physical length of ~169.51 kb on chromosome P12 in pepper. Capana12g000958, encoding a developmentally regulated G protein 2, was proposed as the strongest candidate via sequence comparison and expression analysis. Fruit orientation is an important horticultural and domesticated trait, which is controlled by a single semi-dominant gene (up) in pepper. However, the gene underlying up locus has not yet been identified. In this study, the previously detected major QTL UP12.1 was firstly verified using a backcross population (n = 225) stem from the cross of BB3 (C. annuum) and its wild relative Chiltepin (C. annuum var. glabriusculum) using BB3 as the recurrent parent. Then, a large BC1F2 population (n = 1827) was used for recombinant screening to delimit the up locus into an interval with ~ 169.51 kb in length. Sequence comparison and expression analysis suggested that Capana12g000958, encoding a developmentally regulated G protein 2, was the most likely candidate gene for the up locus. There is no difference within the coding sequences of Capana12g000958 between BB3 and Chiltepin, while a SNP in the upstream of Capana12g000958 showed a complete correlation with the fruit orientation among a panel of 40 diverse pepper inbred lines. These findings will form a basis for gene isolation and reveal of genetic mechanism underlying the fruit orientation domestication in pepper.


Asunto(s)
Capsicum/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Capsicum/fisiología , Frutas/fisiología , Fenotipo , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
7.
Theor Appl Genet ; 133(3): 889-902, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31863157

RESUMEN

KEY MESSAGE: The pepper restorer-of-fertility (CaRf) gene was fine mapped based on conjoint analysis of recombinants and collinearity between the two pepper reference genomes. Capana06g003028, encoding an Rf-like PPR protein, was proposed as the strongest candidate for pepper CaRf based on sequence comparison and expression analysis. The cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) system not only provides an excellent model to dissect genetic interactions between the mitochondria and nucleus but also plays a vital role in high-efficiency hybrid seed production in crops including pepper (Capsicum spp.). Although two important CMS candidate genes, orf507 and Ψatp6-2, have previously been suggested, the pepper Rf gene (CaRf) has not yet been isolated. In this study, a high-density genetic map comprising 7566 SNP markers in 1944 bins was first constructed with the array genotyping results from 317 F2 individuals. Based on this map, the CaRf gene was preliminarily mapped to a region of 1.15 Mb in length at the end of chromosome P6. Then, by means of a conjoint analysis of recombinants and collinearity between the two pepper reference genomes, an important candidate interval with 270.10 kb in length was delimited for CaRf. Finally, Capana06g003028, which encodes an Rf-like PPR protein, was proposed as the strongest candidate for CaRf based on sequence analysis and expression characteristics in sterile and fertile plants. The high-density genetic map and fine mapping results provided here lay a foundation for the application of molecular breeding, as well as cloning and functional analysis of CaRf, in pepper.


Asunto(s)
Capsicum/genética , Infertilidad Vegetal/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Citoplasma/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple
8.
Proc Natl Acad Sci U S A ; 111(14): 5135-40, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24591624

RESUMEN

As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.


Asunto(s)
Capsicum/genética , Genoma de Planta , Elementos Transponibles de ADN , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Retroelementos , Selección Genética , Transcripción Genética
9.
Int J Mol Sci ; 14(11): 22982-96, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24264042

RESUMEN

Cytoplasmic male sterility (CMS), widely used in the production of hybrid seeds, is a maternally inherited trait resulting in a failure to produce functional pollen. In order to identify some specific proteins associated with CMS in pepper, two-dimensional gel electrophoresis (2-DE) was applied to proteomic analysis of anthers/buds between a CMS line (designated NA3) and its maintainer (designated NB3) in Capsicum annuum L. Thirty-three spots showed more than 1.5-fold in either CMS or its maintainer. Based on mass spectrometry, 27 spots representing 23 distinct proteins in these 33 spots were identified. Proteins down-regulated in CMS anthers/buds includes ATP synthase D chain, formate dehydrogenase, alpha-mannosidas, RuBisCO large subunit-binding protein subunit beta, chloroplast manganese stabilizing protein-II, glutathione S-transferase, adenosine kinase isoform 1T-like protein, putative DNA repair protein RAD23-4, putative caffeoyl-CoA 3-O-methyltransferase, glutamine synthetase (GS), annexin Cap32, glutelin, allene oxide cyclase, etc. In CMS anthers/buds, polyphenol oxidase, ATP synthase subunit beta, and actin are up-regulated. It was predicted that male sterility in NA3 might be related to energy metabolism turbulence, excessive ethylene synthesis, and suffocation of starch synthesis. The present study lays a foundation for future investigations of gene functions associated with pollen development and cytoplasmic male sterility, and explores the molecular mechanism of CMS in pepper.


Asunto(s)
Capsicum/crecimiento & desarrollo , Infertilidad Vegetal/genética , Polen/genética , Proteoma/análisis , Capsicum/genética , Citoplasma/genética , Citoplasma/patología , Citoplasma/fisiología , Electroforesis en Gel Bidimensional , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas , Proteínas de Plantas/biosíntesis , Polen/crecimiento & desarrollo
10.
Front Plant Sci ; 14: 1128926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235005

RESUMEN

Bitter gourd is an economically important vegetable and medicinal crop distinguished by its bitter fruits. Its stigma color is widely used to assess the distinctiveness, uniformity, and stability of bitter gourd varieties. However, limited researches have been dedicated to genetic basis of its stigma color. In this study, we employed bulked segregant analysis (BSA) sequencing to identify a single dominant locus McSTC1 located on pseudochromosome 6 through genetic mapping of an F2 population (n =241) derived from the cross between green and yellow stigma parental lines. An F2-derived F3 segregation population (n = 847) was further adopted for fine mapping, which delimited the McSTC1 locus to a 13.87 kb region containing one predicted gene McAPRR2 (Mc06g1638), a homolog of the Arabidopsis two-component response regulator-like gene AtAPRR2. Sequence alignment analysis of McAPRR2 revealed that a 15 bp insertion at exon 9 results in a truncated GLK domain of its encoded protein, which existed in 19 bitter gourd varieties with yellow stigma. A genome-wide synteny search of the bitter gourd McAPRR2 genes in Cucurbitaceae family revealed its close relationship with other cucurbits APRR2 genes that are corresponding to white or light green fruit skin. Our findings provide insights into the molecular marker-assisted breeding of bitter gourd stigma color and the mechanism of gene regulation for stigma color.

11.
Front Plant Sci ; 14: 1153208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881613

RESUMEN

In Cucurbitaceae crops, the first flower node (FFN) is an important agronomic trait which can impact the onset of maturity, the production of female flowers, and yield. However, the gene responsible for regulating FFN in bitter gourd is unknown. Here, we used a gynoecious line (S156G) with low FFN as the female parent and a monoecious line (K8-201) with high FFN as the male parent to obtain F1 and F2 generations. Genetic analysis indicated that the low FFN trait was incompletely dominant over the high FFN trait. A major quantitative trait locus (QTL)-Mcffn and four minor effect QTLs-Mcffn1.1, Mcffn1.2, Mcffn1.3, and Mcffn1.4 were detected by whole-genome re-sequencing-based QTL mapping in the S156G×K8-201 F2 population (n=234) cultivated in autumn 2019. The Mcffn locus was further supported by molecular marker-based QTL mapping in three S156G×K8-201 F2 populations planted in autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022 (n=205). Then, the Mcffn locus was fine-mapped into a 77.98-kb physical region on pseudochromosome MC06 using a large S156G×K8-201 F2 population (n=2,402). MC06g1112, which is a homolog of FLOWERING LOCUS T (FT), was considered as the most likely Mcffn candidate gene according to both expression and sequence variation analyses between parental lines. A point mutation (C277T) in MC06g1112, which results in a P93S amino acid mutation between parental lines, may be responsible for decreasing FFN in bitter gourd. Our findings provide a helpful resource for the molecular marker-assisted selective breeding of bitter gourd.

12.
Front Plant Sci ; 13: 875631, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574132

RESUMEN

Seed coat color is one of the most intuitive phenotypes in bitter gourd (Momordica spp.). Although the inheritance of the seed coat color has been reported, the gene responsible for it is still unknown. This study used two sets of parents, representing, respectively, the intersubspecific and intraspecific materials of bitter gourd, and their respective F1 and F2 progenies for genetic analysis and primary mapping of the seed coat color. A large F2:3 population comprising 2,975 seedlings from intraspecific hybridization was used to fine-map the seed coat color gene. The results inferred that a single gene, named McSC1, controlled the seed coat color and that the black color was dominant over the yellow color. The McSC1 locus was mapped to a region with a physical length of ∼7.8 Mb and 42.7 kb on pseudochromosome 3 via bulked segregant analysis with whole-genome resequencing (BSA-seq) and linkage analysis, respectively. Subsequently, the McSC1 locus was further fine-mapped to a 13.2-kb region containing only one candidate gene, MC03g0810, encoding a polyphenol oxidase (PPO). Additionally, the variations of MC03g0810 in the 89 bitter gourd germplasms showed a complete correlation with the seed coat color. Expression and PPO activity analyses showed a positive correlation between the expression level of MC03g0810 and its product PPO and the seed coat color. Therefore, MC03g0810 was proposed as the causal gene of McSC1. Our results provide an important reference for molecular marker-assisted breeding based on the seed coat color and uncover molecular mechanisms of the seed coat color formation in bitter gourd.

13.
Front Plant Sci ; 12: 783496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069640

RESUMEN

Pungency is a unique characteristic of chili peppers (Capsicum spp.) caused by capsaicinoids. The evolutionary emergence of pungency is thought to be a derived trait within the genus Capsicum. However, it is not well-known how pungency has varied during Capsicum domestication and specialization. In this study, we applied a comparative metabolomics along with transcriptomics analysis to assess various changes between two peppers (a mildly pungent cultivated pepper BB3 and its hot progenitor chiltepin) at four stages of fruit development, focusing on pungency variation. A total of 558 metabolites were detected in two peppers. In comparison with chiltepin, capsaicinoid accumulation in BB3 was almost negligible at the early stage. Next, 412 DEGs associated with the capsaicinoid accumulation pathway were identified through coexpression analysis, of which 18 genes (14 TFs, 3 CBGs, and 1 UGT) were deemed key regulators due to their high coefficients. Based on these data, we speculated that downregulation of these hub genes during the early fruit developmental stage leads to a loss in pungency during Capsicum domestication (from chiltepin to BB3). Of note, a putative UDP-glycosyltransferase, GT86A1, is thought to affect the stabilization of capsaicinoids. Our results lay the foundation for further research on the genetic diversity of pungency traits during Capsicum domestication and specialization.

14.
Genes Genomics ; 42(10): 1117-1130, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32737808

RESUMEN

Plant-specific SnRK2 (sucrose nonfermenting-1-related protein kinase 2) genes play crucial roles in the coordination of plant growth and development and responses to stress. However, comprehensive studies have not been performed for this gene family in pepper (Capsicum annuum), a very important Solanaceous vegetable worldwide. To fully understand the status of SnRK2s in chili pepper, a total of 9 putative SnRK2 genes (named CaSnRK2.1-2.9) were identified in pepper in the present study. These genes were located on 7 different chromosomes and classified into three subfamilies based on the phylogenetic tree. Their conserved motif compositions and exon-intron structures were systematically analyzed, and the results strongly supported the classification. Furthermore, a total of 81 putative cis-elements were found in the promoter regions, and the cis-elements related to hormone and stress signaling were abundant. Finally, the CaSnRK2 gene expression profiles among different tissues, especially developing fruit tissue, and under various abiotic stresses were investigated to identify tissue-specific or stress-responsive candidates. This study was the first to comprehensively investigate the SnRK2 family in pepper, and the results provide important clues for further functional analyses of fruit development and abiotic stress responses.


Asunto(s)
Capsicum/genética , Desarrollo de la Planta/genética , Proteínas Serina-Treonina Quinasas/genética , Estrés Fisiológico/genética , Proteínas de Arabidopsis/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Especificidad de Órganos/genética
15.
PLoS One ; 15(12): e0244515, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33373406

RESUMEN

The CRISPR/Cas9 system is an efficient genome editing tool that possesses the outstanding advantages of simplicity and high efficiency. Genome-wide identification and specificity analysis of editing sites is an effective approach for mitigating the risk of off-target effects of CRISPR/Cas9 and has been applied in several plant species but has not yet been reported in pepper. In present study, we first identified genome-wide CRISPR/Cas9 editing sites based on the 'Zunla-1' reference genome and then evaluated the specificity of CRISPR/Cas9 editing sites through whole-genome alignment. Results showed that a total of 603,202,314 CRISPR/Cas9 editing sites, including 229,909,837 (~38.11%) NGG-PAM sites and 373,292,477 (~61.89%) NAG-PAM sites, were detectable in the pepper genome, and the systematic characterization of their composition and distribution was performed. Furthermore, 29,623,855 highly specific NGG-PAM sites were identified through whole-genome alignment analysis. There were 26,699,38 (~90.13%) highly specific NGG-PAM sites located in intergenic regions, which was 9.13 times of the number in genic regions, but the average density in genic regions was higher than that in intergenic regions. More importantly, 34,251 (~96.93%) out of 35,336 annotated genes exhibited at least one highly specific NGG-PAM site in their exons, and 90.50% of the annotated genes exhibited at least 4 highly specific NGG- PAM sites, indicating that the set of highly specific CRISPR/Cas9 editing sites identified in this study was widely applicable and conducive to the minimization of the off-target effects of CRISPR/Cas9 in pepper.


Asunto(s)
Sistemas CRISPR-Cas/genética , Capsicum/genética , Edición Génica/métodos , Genoma de Planta/genética , Fitomejoramiento , Alineación de Secuencia
16.
Hortic Res ; 7(1): 85, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528697

RESUMEN

Bitter gourd (Momordica charantia) is a popular cultivated vegetable in Asian and African countries. To reveal the characteristics of the genomic structure, evolutionary trajectory, and genetic basis underlying the domestication of bitter gourd, we performed whole-genome sequencing of the cultivar Dali-11 and the wild small-fruited line TR and resequencing of 187 bitter gourd germplasms from 16 countries. The major gene clusters (Bi clusters) for the biosynthesis of cucurbitane triterpenoids, which confer a bitter taste, are highly conserved in cucumber, melon, and watermelon. Comparative analysis among cucurbit genomes revealed that the Bi cluster involved in cucurbitane triterpenoid biosynthesis is absent in bitter gourd. Phylogenetic analysis revealed that the TR group, including 21 bitter gourd germplasms, may belong to a new species or subspecies independent from M. charantia. Furthermore, we found that the remaining 166 M. charantia germplasms are geographically differentiated, and we identified 710, 412, and 290 candidate domestication genes in the South Asia, Southeast Asia, and China populations, respectively. This study provides new insights into bitter gourd genetic diversity and domestication and will facilitate the future genomics-enabled improvement of bitter gourd.

17.
Front Plant Sci ; 9: 477, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706980

RESUMEN

Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia) is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD)-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line 'K44' and the monoecious line 'Dali-11.' This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48%) of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future.

18.
Front Plant Sci ; 8: 495, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443105

RESUMEN

The microRNA (miRNA) can regulate the transcripts that are involved in eukaryotic cell proliferation, differentiation, and metabolism. Especially for plants, our understanding of miRNA targets, is still limited. Early attempts of prediction on sequence alignments have been plagued by enormous false positives. It is helpful to improve target prediction specificity by incorporating the other data sources such as the dependency between miRNA and transcript expression or even cleaved transcripts by miRNA regulations, which are referred to as trans-omics data. In this paper, we developed MiRTrans (Prediction of MiRNA targets by Trans-omics data) to explore miRNA targets by incorporating miRNA sequencing, transcriptome sequencing, and degradome sequencing. MiRTrans consisted of three major steps. First, the target transcripts of miRNAs were predicted by scrutinizing their sequence characteristics and collected as an initial potential targets pool. Second, false positive targets were eliminated if the expression of miRNA and its targets were weakly correlated by lasso regression. Third, degradome sequencing was utilized to capture the miRNA targets by examining the cleaved transcripts that regulated by miRNAs. Finally, the predicted targets from the second and third step were combined by Fisher's combination test. MiRTrans was applied to identify the miRNA targets for Capsicum spp. (i.e., pepper). It can generate more functional miRNA targets than sequence-based predictions by evaluating functional enrichment. MiRTrans identified 58 miRNA-transcript pairs with high confidence from 18 miRNA families conserved in eudicots. Most of these targets were transcription factors; this lent support to the role of miRNA as key regulator in pepper. To our best knowledge, this work is the first attempt to investigate the miRNA targets of pepper, as well as their regulatory networks. Surprisingly, only a small proportion of miRNA-transcript pairs were shared between degradome sequencing and expression dependency predictions, suggesting that miRNA targets predicted by a single technology alone may be prone to report false negatives.

19.
Front Plant Sci ; 8: 1103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690629

RESUMEN

Bitter gourd (Momordica charantia) is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus), watermelon (Citrullus lanatus), and melon (Cucumis melo) genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs) in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines 'Dali-11' and 'OHB3-1,' respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines 'Dali-11' and 'K44'. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

20.
Front Plant Sci ; 7: 574, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200047

RESUMEN

Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA