Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 834-841, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36224686

RESUMEN

Objective: To investigate the effects of using Bifidobacterium bifidum TMC3115 in early life on intestinal microbiota and immune functions and the long-term impact on inflammatory bowel disease. Methods: Fourteen pregnant BALB/c mice were purchased and 84 newborn BALB/c mice were subsequently obtained. Then, the newborn mice were randomly assigned to a normal saline (NS) group and a TMC3115 group, given via oral gavage normal saline and TMC3115, respectively, at a daily volume of 0.2 mL for each mouse. About 42 mice were assigned to each group. The gavage was stopped after 3 weeks. At this point, half of the mice in each group were sacrificed, and then the remaining mice in each group were randomly divided into NS-water group, NS-DSS group, TMC3115-water group, and TMC3115-DSS group, with about 10 mice in each group. The mice were given regular feed until the end of week 6 when they were given 3% dextran sulphate sodium (DSS) ad libitum for 4 days to establish the enteritis model, while the non-modeling groups were given pure water ad libitum. The experiment ended after 6 weeks and 4 days. The weekly body mass changes of the mice were documented. The intestinal tissue at the end of the experiment and the fecal samples, spleen and serum of the mice at 3 weeks and at the end of the experiment were collected to determine the pathology scores of colonic inflammation, the composition of fecal gut microbiota, spleen organ index and the mass concentration of serum cytokines. Results: 1) At the end of the experiment, the inflammatory pathology score was significantly lower in the TMC3115-DSS group compared with that of the Saline-DSS group ( P<0.05), with less disruption of colonic crypt structures and other structures, less inflammatory infiltration, and more intact epithelial structures. 2) At 3 weeks, in comparison with those of the NS group, the relative abundance of Bifidobacteriumwas significantly higher in the feces of the TMC3115 ( P<0.05), the relative abundance of both Enterococcusand Staphylococcuswas lower ( P<0.05), the splenic organ index was significantly higher ( P<0.05), and interleukin (IL)-10 was significantly decreased ( P<0.05), while there was no significant change in IL-6 or TNF-α ( P>0.05). At the end of the experiment, in comparison with those of the NS-DSS group that undergone DSS induction, the TMC3115-DSS group had reduced relative abundance of Staphylococcus, Staphylococcus tumefaciens and Escherichia/ Shigellain the feces ( P<0.05), while the splenic organ index was significantly higher ( P<0.05), and there were no significant changes in IL-6 or TNF-α ( P>0.05). Conclusion: The use of TMC3115 in early life promotes the construction of gut microbiota in neonatal mice, thereby producing a long-term effect that alleviates colitis in mice, but the mechanisms involved are still not fully understood.


Asunto(s)
Bifidobacterium bifidum , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Colitis/microbiología , Colon , Citocinas , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Interleucina-6 , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Solución Salina/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Agua/farmacología
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(4): 318-325, 2018 Apr.
Artículo en Zh | MEDLINE | ID: mdl-29658459

RESUMEN

OBJECTIVE: To investigate the effect of ceftriaxone on the intestinal epithelium and microbiota in mice in the early-life stage, as well as the recovery of the intestinal epithelium and reconstruction of intestinal microbiota in adult mice. METHODS: A total of 36 BALB/C neonatal mice were randomly divided into control group and experimental group, with 18 mice in each group. The mice in the experimental group were given ceftriaxone 100 mg/kg every day by gavage within 21 days after birth. Those in the control group were given an equal volume of normal saline by gavage. Immunohistochemistry was used to measure the expression of Ki67, Muc2, and ZO-1 in the intestinal epithelium. qPCR and next-generation sequencing were used to analyze the overall concentration and composition of fecal bacteria. RESULTS: After 21 days of ceftriaxone intervention, the experimental group had a significant reduction in body weight, a significant reduction in the expression of Ki67 and ZO-1 and a significant increase in the expression of Muc2 in intestinal epithelial cells, a significant reduction in the overall concentration of fecal bacteria, and a significant increase in the diversity of fecal bacteria compared with the control group (P<0.05). Firmicutes was the most common type of fecal bacteria in the experimental group, and there were large amounts of Staphylococcus and Enterococcus. The experimental group had a certain degree of recovery of the intestinal epithelium, but there were still significant differences in body weight and the structure of intestinal microbiota between the two groups at 56 days after birth (P<0.05). CONCLUSIONS: Early ceftriaxone intervention significantly affects the development of the intestinal epithelium and the construction of intestinal microbiota in the early-life stage. The injury of the intestinal microbiota in the early-life stage may continue to the adult stage and affect growth and development and physiological metabolism.


Asunto(s)
Antibacterianos/farmacología , Ceftriaxona/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Antígeno Ki-67/análisis , Ratones , Ratones Endogámicos BALB C , Mucina 2/análisis , Proteína de la Zonula Occludens-1/análisis
3.
Biosci Microbiota Food Health ; 38(4): 129-139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31763116

RESUMEN

The prevalence of allergy has increased over the past decades, and this may be attributed in part to the intestinal microbiota dysfunction caused by antibiotics during early life. In this study, we evaluated how vancomycin could impair the intestinal microbiota during early life and then, consequently, alter susceptibilities to allergic diseases and related immunity in late adulthood. BALB/c (n=54) neonatal mice were used in this study. Mice in the vancomycin group were orally administered vancomycin for 21 days, while those in the allergy and control groups were perfused with the same volume of saline solution. Then, mice in the allergy and vancomycin groups were immunized with intraperitoneal ovalbumin with alum. At postnatal day 21, vancomycin significantly alter the fecal microbiota, with lower Bacteroidetes and Firmicutes counts and higher Proteobacteria counts. At postnatal day 56, the Bacteroidetes count was still significantly lower in vancomycin-treated mice. The serum IgE level in the control group was significantly lower than that in the vancomycin and allergy groups. The serum interleukin (IL)-6 level and the IL-4/interferon (IFN)-γ values were significantly higher in the vancomycin-treated mice, but the serum IL-17A level was lower than that in the control group. These results indicate that modifications of the intestinal microbiota composition during early life may be, at least in part, the key mechanism underlying the effect of vancomycin that influences the immune function of host animals in the adult stages.

4.
Pathog Dis ; 75(8)2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-28957452

RESUMEN

This study aimed to determine how antibiotic-driven intestinal dysbiosis impairs the development and differentiation of the digestive tract and immune organs of host animals. BALB/C neonatal mice were orally administered ceftriaxone or vancomycin from postnatal day 1 to day 21 and sacrificed on day 21. The diversity and abundance of the intestinal bacteria, morphological changes and barrier function of intestinal tract, and the splenic CD4+CD25+Foxp3+ T cells were investigated. The gut microbiota and intestinal tissue were damaged, and the numbers of Ki67-, Muc2- and ZO-1-positive cells were significantly decreased in the antibiotic treatment groups. Furthermore, the administration of ceftriaxone, but not vancomycin, led to a significant reduction in the abundance of splenic CD4+CD25+Foxp3+ T cells. Each antibiotic caused intestinal dysbiosis and characteristically influenced the regeneration of intestinal epithelial cells, formation of the intestinal mucus layer and tight junctions, and differentiation of splenic Foxp3+ Treg cells of the neonatal mice before any clinical side effects were observed. The potent ability of each antibiotic to affect the makeup of intestinal commensal microbiota may be a key determinant of the spectrum of antibiotics and influence the health of the host animal, at least partly.


Asunto(s)
Ceftriaxona/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Vancomicina/toxicidad , Animales , Animales Recién Nacidos , Antibacterianos/toxicidad , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA