Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 12, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254097

RESUMEN

BACKGROUND: Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS: To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-ß-mediated responses in pathologic scars. RESULTS: The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-ß1 signaling through binding with and stabilizing TGF-ß receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS: Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-ß signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Antígenos CD , Antígenos de Neoplasias , Cicatriz Hipertrófica/metabolismo , Fibroblastos , Queloide/metabolismo , Piel
2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958985

RESUMEN

Aortic wall inflammation, abnormal oxidative stress and progressive degradation of extracellular matrix proteins are the main characteristics of abdominal aortic aneurysms (AAAs). The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome dysregulation plays a crucial role in aortic damage and disease progression. The first aim of this study was to examine the effect of baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one) on AAA formation in apolipoprotein E-deficient (ApoE-/-) mice. The second aim was to define whether baicalein attenuates aberrant vascular smooth muscle cell (VSMC) proliferation and inflammation in VSMC culture. For male ApoE-/- mice, a clinically relevant AAA model was randomly divided into four groups: saline infusion, baicalein intraperitoneal injection, Angiotensin II (Ang II) infusion and Ang II + baicalein. Twenty-seven days of treatment with baicalein markedly decreased Ang II-infused AAA incidence and aortic diameter, reduced collagen-fiber formation, preserved elastic structure and density and prevented smooth muscle cell contractile protein degradation. Baicalein inhibited rat VSMC proliferation and migration following the stimulation of VSMC cultures with Ang II while blocking the Ang II-inducible cell cycle progression from G0/G1 to the S phase in the synchronized cells. Cal-520 AM staining showed that baicalein decreased cellular calcium in Ang II-induced VSMCs; furthermore, a Western blot assay indicated that baicalein inhibited the expression of PCNA and significantly lowered levels of phospho-Akt and phospho-ERK, along with an increase in baicalein concentration in Ang II-induced VSMCs. Immunofluorescence staining showed that baicalein pretreatment reduced NF-κB nuclear translocation in Ang II-induced VSMCs and furthered the protein expressions of NLRP3 while ASC and caspase-1 were suppressed in a dose-dependent manner. Baicalein pretreatment upregulated Nrf2/HO-1 signaling in Ang II-induced VSMCs. Thus, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining showed that its reactive oxygen species (ROS) production decreased, along with the baicalein pretreatment. Our overall results indicate that baicalein could have therapeutic potential in preventing aneurysm development.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Masculino , Ratones , Ratas , Animales , Angiotensina II/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298473

RESUMEN

Osteoarthritis (OA) is a prevalent form of arthritis that affects over 32.5 million adults worldwide, causing significant cartilage damage and disability. Unfortunately, there are currently no effective treatments for OA, highlighting the need for novel therapeutic approaches. Thrombomodulin (TM), a glycoprotein expressed by chondrocytes and other cell types, has an unknown role in OA. Here, we investigated the function of TM in chondrocytes and OA using various methods, including recombinant TM (rTM), transgenic mice lacking the TM lectin-like domain (TMLeD/LeD), and a microRNA (miRNA) antagomir that increased TM expression. Results showed that chondrocyte-expressed TM and soluble TM [sTM, like recombinant TM domain 1 to 3 (rTMD123)] enhanced cell growth and migration, blocked interleukin-1ß (IL-1ß)-mediated signaling and protected against knee function and bone integrity loss in an anterior cruciate ligament transection (ACLT)-induced mouse model of OA. Conversely, TMLeD/LeD mice exhibited accelerated knee function loss, while treatment with rTMD123 protected against cartilage loss even one-week post-surgery. The administration of an miRNA antagomir (miR-up-TM) also increased TM expression and protected against cartilage damage in the OA model. These findings suggested that chondrocyte TM plays a crucial role in counteracting OA, and miR-up-TM may represent a promising therapeutic approach to protect against cartilage-related disorders.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Trombomodulina/metabolismo , Antagomirs/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , MicroARNs/metabolismo , Interleucina-1beta/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063380

RESUMEN

MicroRNAs (miRNAs) could serve as ideal entry points to the deregulated pathways in osteoporosis due to their relatively simple upstream and downstream relationships with other molecules in the signaling cascades. Our study aimed to give a comprehensive review of the already identified miRNAs in osteoporosis from human blood samples and provide useful information for their clinical application. A systematic literature search for relevant studies was conducted in the Pubmed database from inception to December 2020. We set two essential inclusion criteria: human blood sampling and design of controlled studies. We sorted the results of analysis on human blood samples according to the study settings and compiled the most promising miRNAs with analyzed diagnostic values. Furthermore, in vitro and in vivo evidence for the mechanisms of the identified miRNAs was also illustrated. Based on both diagnostic value and evidence of mechanism from in vitro and in vivo experiments, miR-23b-3p, miR-140-3p, miR-300, miR-155-5p, miR-208a-3p, and miR-637 were preferred candidates in diagnostic panels and as therapeutic agents. Further studies are needed to build sound foundations for the clinical usage of miRNAs in osteoporosis.


Asunto(s)
MicroARNs/sangre , MicroARNs/genética , Osteoporosis/genética , Fracturas Osteoporóticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estrógenos/sangre , Femenino , Anciano Frágil , Humanos , MicroARNs/metabolismo , Persona de Mediana Edad , Osteoporosis/complicaciones , Osteoporosis/metabolismo , Vía de Señalización Wnt/genética
5.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769439

RESUMEN

T helper (Th)2 cytokines such as interleukin (IL)-4 and IL-13 control immune function by acting on leukocytes. They also regulate multiple responses in non-hematopoietic cells. During pregnancy, IL-4 and IL-13 facilitate alveologenesis of mammary glands. This particular morphogenesis generates alveoli from existing ducts and requires substantial cell proliferation. Using 3D cultures of primary mouse mammary epithelial cells, we demonstrate that IL-4 and IL-13 promote cell proliferation, leading to enlargement of mammary acini with partially filled lumens. The mitogenic effects of IL-4 and IL-13 are mediated by STAT6 as inhibition of STAT6 suppresses cell proliferation and improves lumen formation. In addition, IL-4 and IL-13 stimulate tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). Prolonged treatment with these cytokines leads to increased IRS-1 abundance, which, in turn, amplifies IL-4- and IL-13-stimulated IRS-1 tyrosine phosphorylation. Through signaling crosstalk between IL-4/IL-13 and insulin, a hormone routinely included in mammary cultures, IRS-1 tyrosine phosphorylation is further enhanced. Lowering IRS-1 expression reduces cell proliferation, suggesting that IRS-1 is involved in IL-4- and IL-13-stimulated cell proliferation. Thus, a Th2-dominant cytokine milieu during pregnancy confers mammary gland development by promoting cell proliferation.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Células Epiteliales/citología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Glándulas Mamarias Animales/citología , Factor de Transcripción STAT6/metabolismo , Animales , Proliferación Celular , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos ICR , Modelos Animales , Fosforilación , Embarazo , Transducción de Señal
6.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672524

RESUMEN

Human bone marrow stem cells (HBMSCs) are isolated from the bone marrow. Stem cells can self-renew and differentiate into various types of cells. They are able to regenerate kinds of tissue that are potentially used for tissue engineering. To maintain and expand these cells under culture conditions is difficult-they are easily triggered for differentiation or death. In this study, we describe a new culture formula to culture isolated HBMSCs. This new formula was modified from NCDB 153, a medium with low calcium, supplied with 5% FBS, extra growth factor added to it, and supplemented with N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate to maintain the cells in a steady stage. The cells retain these characteristics as primarily isolated HBMSCs. Moreover, our new formula keeps HBMSCs with high proliferation rate and multiple linage differentiation ability, such as osteoblastogenesis, chondrogenesis, and adipogenesis. It also retains HBMSCs with stable chromosome, DNA, telomere length, and telomerase activity, even after long-term culture. Senescence can be minimized under this new formulation and carcinogenesis of stem cells can also be prevented. These modifications greatly enhance the survival rate, growth rate, and basal characteristics of isolated HBMSCs, which will be very helpful in stem cell research.


Asunto(s)
Antioxidantes/farmacología , Calcio/farmacología , Senescencia Celular , Medios de Cultivo/química , Células Madre Mesenquimatosas/citología , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Daño del ADN , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
7.
Eur J Vasc Endovasc Surg ; 59(6): 990-999, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32033870

RESUMEN

OBJECTIVE: Evidence suggests that cathepsin S (CTSS), a potent mammalian elastase, participates in abdominal aortic aneurysm (AAA) formation. This study examines the hypothesis that pharmacological inhibition of CTSS with an α-ketoamide based compound 6r might suppress AAA in mice. METHODS: Experimental study of the CaCl2 induced AAA model in B6 mice and angiotensin II (AngII) infused AAA model in ApoE-/- mice. The effects of intraperitoneal administration of 6r (25 mg/kg) and vehicle every three days since one day after AAA induction were evaluated at 28 days using CaCl2 induced (n = 12 per group) and AngII infused (n = 8 per group) models. Additionally, the effects of post-treatment with 6r and vehicle from seven days or 14 days after AAA induction were evaluated at 28 days using the CaCl2 induced model (n = 6 per group). Aortic samples were harvested for histological and biochemical analyses, including cathepsin levels, Verhoeff Van Gieson staining, TUNEL assay, and immunostaining for macrophages. RESULTS: In the CaCl2 induced model, treatment with 6r suppressed aortic dilatation observed in vehicle treated controls (median: 0.58 vs. 0.92 mm; p < .001), along with reduced CTSS and cathepsin K (CTSK) levels (both p < .001), preserved elastin integrity (p < .001), fewer medial apoptotic cells (p = .012) and less macrophage infiltration (p = .041). In the AngII infused model, the aortic diameter was smaller in 6r treated mice than in vehicle treated controls (median: 0.95 vs. 1.84 mm; p = .047). The levels of CTSS (p < .001) and CTSK (p = .033) and the numbers of elastin breaks (p < .001), medial apoptotic cells (p < .001) and infiltrating macrophages (p = .030) were attenuated under 6r treatment. Finally, post-treatment with 6r from seven days (p = .046) or 14 days (p = .012) after AAA induction limited CaCl2 induced AAA. CONCLUSION: Pharmacological inhibition of CTSS by 6r suppresses AAA formation in mice. Also, post-treatment with 6r retards mouse AAA progression. These findings provide proof of concept validation for CTSS as a potential therapeutic target in AAA.


Asunto(s)
Amidas/administración & dosificación , Aorta Abdominal/efectos de los fármacos , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Catepsinas/antagonistas & inhibidores , Angiotensina II/toxicidad , Animales , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/prevención & control , Cloruro de Calcio/toxicidad , Catepsinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Regulación hacia Arriba
8.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003599

RESUMEN

Discoidin domain receptor 1 (Drd1) is a collagen-binding membrane protein, but its role in osteoblasts during osteogenesis remains undefined. We generated inducible osteoblast-specific Ddr1 knockout (OKOΔDdr1) mice; their stature at birth, body weight and body length were significantly decreased compared with those of control Ddr1f/f-4OHT mice. We hypothesize that Ddr1 regulates osteogenesis of osteoblasts. Micro-CT showed that compared to 4-week-old Ddr1f/f-4OHT mice, OKOΔDdr1 mice presented significant decreases in cancellous bone volume and trabecular number and significant increases in trabecular separation. The cortical bone volume was decreased in OKOΔDdr1 mice, resulting in decreased mechanical properties of femurs compared with those of Ddr1f/f-4OHT mice. In femurs of 4-week-old OKOΔDdr1 mice, H&E staining showed fewer osteocytes and decreased cortical bone thickness than Ddr1f/f-4OHT. Osteoblast differentiation markers, including BMP2, Runx2, alkaline phosphatase (ALP), Col-I and OC, were decreased compared with those of control mice. Ddr1 knockdown in osteoblasts resulted in decreased mineralization, ALP activity, phosphorylated p38 and protein levels of BMP2, Runx2, ALP, Col-I and OC during osteogenesis. Overexpression and knockdown of Ddr1 in osteoblasts demonstrated that DDR1 mediates the expression and activity of Runx2 and the downstream osteogenesis markers during osteogenesis through regulation of p38 phosphorylation.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteogénesis/genética , Receptores de Dopamina D1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Fosfatasa Alcalina/genética , Animales , Proteína Morfogenética Ósea 2/genética , Colágeno/genética , Fémur/crecimiento & desarrollo , Fémur/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Fosforilación/genética
9.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635662

RESUMEN

Mesenchymal stem cells (MSCs) have two characteristics of interest for this paper: the ability to self-renew, and the potential for multiple-lineage differentiation into various cells. MSCs have been used in cardiac tissue regeneration for over a decade. Adult cardiac tissue regeneration ability is quite low; it cannot repair itself after injury, as the heart cells are replaced by fibroblasts and lose function. It is therefore important to search for a feasible way to repair and restore heart function through stem cell therapy. Stem cells can differentiate and provide a source of progenitor cells for cardiomyocytes, endothelial cells, and supporting cells. Studies have shown that the concentrations of blood lipids and lipoproteins affect cardiovascular diseases, such as atherosclerosis, hypertension, and obesity. Furthermore, the MSC lipid profiles, such as the triglyceride and cholesterol content, have been revealed by lipidomics, as well as their correlation with MSC differentiation. Abnormal blood lipids can cause serious damage to internal organs, especially heart tissue. In the past decade, the accumulated literature has indicated that lipids/lipoproteins affect stem cell behavior and biological functions, including their multiple lineage capability, and in turn affect the outcome of regenerative medicine. This review will focus on the effect of lipids/lipoproteins on MSC cardiac regenerative medicine, as well as the effect of lipid-lowering drugs in promoting cardiomyogenesis-associated MSC differentiation.


Asunto(s)
Diferenciación Celular , Regeneración Tisular Dirigida , Corazón/fisiología , Lípidos/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Humanos , Hipolipemiantes , Medicina Regenerativa
10.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977456

RESUMEN

We recently reported that the chondrocyte-specific knockout of discoidin domain receptors 1 (Ddr1) delayed endochondral ossification (EO) in the growth plate by reducing the chondrocyte hypertrophic terminal differentiation, and apoptosis. The biologic and phenotypic changes in chondrocytes in the articular cartilage with osteoarthritis (OA) are similar to the phenomena observed in the process of EO. Additionally, autophagy can promote chondrocyte survival and prevent articular cartilage from degradation in OA. On this basis, we explored the effect of Ddr1 inhibition on OA prevention and further investigated the roles of autophagy in treating OA with a Ddr1 inhibitor (7 rh). The anterior cruciate ligament transection (ACLT)-OA model was used to investigate the role of 7 rh in vivo. Forty 8-week-old mice were randomly assigned to four groups, including the sham group, ACLT group, and two treated groups (ACLT with 7 rh 6.9 nM or 13.8 nM). According to the study design, normal saline or 7 rh were intra-articular (IA) injected into studied knees 3 times per week for 2 weeks and then once per week for 4 weeks. The results showed that 7 rh treatment significantly improved the functional performances (the weight-bearing ability and the running endurance), decreased cartilage degradation, and also reduced the terminal differentiation markers (collagen type X, Indian hedgehog, and matrix metalloproteinase 13). Moreover, 7 rh decreased chondrocyte apoptosis by regulating chondrocyte autophagy through reducing the expression of the mammalian target of rapamycin and enhancing the light chain 3 and beclin-1 expression. These results demonstrated that the IA injection of 7 rh could reduce the chondrocyte apoptosis and promote chondrocyte autophagy, leading to the attenuation of cartilage degradation. Our observations suggested that the IA injection of 7 rh could represent a potential disease-modifying therapy to prevention OA progression.


Asunto(s)
Autofagia , Cartílago Articular , Condrocitos , Receptor con Dominio Discoidina 1 , Osteoartritis , Animales , Antígenos de Diferenciación/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Diferenciación Celular , Línea Celular , Condrocitos/metabolismo , Condrocitos/patología , Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Receptor con Dominio Discoidina 1/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología
11.
Molecules ; 23(12)2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30563251

RESUMEN

Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (-)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).


Asunto(s)
Antioxidantes/farmacología , Catequina/análogos & derivados , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Catequina/farmacología , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos
12.
Arterioscler Thromb Vasc Biol ; 35(11): 2412-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26338301

RESUMEN

OBJECTIVE: Thrombomodulin (TM), a glycoprotein constitutively expressed in the endothelium, is well known for its anticoagulant and anti-inflammatory properties. Paradoxically, we recently found that monocytic membrane-bound TM (ie, endogenous TM expression in monocytes) triggers lipopolysaccharide- and gram-negative bacteria-induced inflammatory responses. However, the significance of membrane-bound TM in chronic sterile vascular inflammation and the development of abdominal aortic aneurysm (AAA) remains undetermined. APPROACH AND RESULTS: Implicating a potential role for membrane-bound TM in AAA, we found that TM signals were predominantly localized to macrophages and vascular smooth muscle cells in human aneurysm specimens. Characterization of the CaCl2-induced AAA in mice revealed that during aneurysm development, TM expression was mainly localized in infiltrating macrophages and vascular smooth muscle cells. To investigate the function of membrane-bound TM in vivo, transgenic mice with myeloid- (LysMcre/TM(flox/flox)) and vascular smooth muscle cell-specific (SM22-cre(tg)/TM(flox/flox)) TM ablation and their respective wild-type controls (TM(flox/flox) and SM22-cre(tg)/TM(+/+)) were generated. In the mouse CaCl2-induced AAA model, deficiency of myeloid TM, but not vascular smooth muscle cell TM, inhibited macrophage accumulation, attenuated proinflammatory cytokine and matrix metalloproteinase-9 production, and finally mitigated elastin destruction and aortic dilatation. In vitro TM-deficient monocytes/macrophages, versus TM wild-type counterparts, exhibited attenuation of proinflammatory mediator expression, adhesion to endothelial cells, and generation of reactive oxygen species. Consistently, myeloid TM-deficient hyperlipidemic mice (ApoE(-/-)/LysMcre/TM(flox/flox)) were resistant to AAA formation induced by angiotensin II infusion, along with reduced macrophage infiltration, suppressed matrix metalloproteinase activities, and diminished oxidative stress. CONCLUSIONS: Membrane-bound TM in macrophages plays an essential role in the development of AAA by enhancing proinflammatory mediator elaboration, macrophage recruitment, and oxidative stress.


Asunto(s)
Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Aortitis/metabolismo , Membrana Celular/metabolismo , Macrófagos Peritoneales/metabolismo , Trombomodulina/metabolismo , Angiotensina II , Animales , Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/inmunología , Aortitis/inducido químicamente , Aortitis/genética , Aortitis/inmunología , Cloruro de Calcio , Membrana Celular/inmunología , Células Cultivadas , Quimiotaxis , Modelos Animales de Enfermedad , Elastina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/inmunología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo , Interferencia de ARN , Estudios Retrospectivos , Transducción de Señal , Trombomodulina/deficiencia , Trombomodulina/genética , Factores de Tiempo , Transfección
13.
Chin J Physiol ; 59(3): 165-72, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27188469

RESUMEN

Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.


Asunto(s)
Acetilcolina/farmacología , Hipertensión/fisiopatología , Ovariectomía , Condicionamiento Físico Animal , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Antioxidantes/metabolismo , Presión Sanguínea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Conducta Sedentaria
14.
Pharmacol Res ; 102: 192-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453957

RESUMEN

ß-Naphthoflavone (ß-NF), a ligand of the aryl hydrocarbon receptor, has been shown to possess anti-oxidative properties. We investigated the anti-oxidative and anti-inflammatory potential of ß-NF in human microvascular endothelial cells treated with tumor necrosis factor-alpha (TNF-α). Pretreatment with ß-NF significantly inhibited TNF-α-induced intracellular reactive oxygen species, translocation of p67(phox), and TNF-α-induced monocyte binding and transmigration. In addition, ß-NF significantly inhibited TNF-α-induced ICAM-1 and VCAM-1 expression. The mRNA expression levels of the inflammatory cytokines TNF-α and IL-6 were reduced by ß-NF, as was the infiltration of white blood cells, in a peritonitis model. The inhibition of adhesion molecules was associated with suppressed nuclear translocation of NF-κB p65 and Akt, and suppressed phosphorylation of ERK1/2 and p38. The translocation of Egr-1, a downstream transcription factor involved in the MEK-ERK signaling pathway, was suppressed by ß-NF treatment. Our findings show that ß-NF inhibits TNF-α-induced NF-kB and ERK1/2 activation and ROS generation, thereby suppressing the expression of adhesion molecules. This results in reduced adhesion and transmigration of leukocytes in vitro and prevents the infiltration of leukocytes in a peritonitis model. Our findings also suggest that ß-NF might prevent TNF-α-induced inflammation.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Peritonitis/tratamiento farmacológico , Sustancias Protectoras/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , beta-naftoflavona/farmacología , Antiinflamatorios/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Peritonitis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo
15.
ScientificWorldJournal ; 2014: 902987, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977233

RESUMEN

Anoikis resistance allows metastatic tumor cells to survive in a homeless environment. Activation of epithelial growth factor receptor (EGFR) signaling is one of the key mechanisms for metastatic tumor cells to resist anoikis, yet the regulation mechanisms of homeless-triggered EGFR activation in metastatic tumor cells remain unclear. Rhomboid-like-2 (RHBDL2), an evolutionally conserved intramembrane serine protease, can cleave the EGF ligand and thus trigger EGFR activation. Herein, we demonstrated that RHBDL2 overexpression in human epithelial cells resulted in promotion of cell proliferation, reduction of cell adhesion, and suppression of anoikis. During long-term suspension cultures, increased RHBDL2 was only detected in aggressive tumor cell lines. Treatment with the rhomboid protease inhibitor or RHBDL2 shRNA increased cleaved caspase 3, a marker of apoptosis. Finally, inhibition of EGFR activation increased the cleaved caspase 3 and attenuated the detachment-induced focal adhesion kinase phosphorylation. Taken together, these findings provide evidence for the first time that RHBDL2 is a critical molecule in anoikis resistance of malignant epithelial cells, possibly through the EGFR-mediated signaling. Our study demonstrates RHBDL2 as a new therapeutic target for cancer metastasis.


Asunto(s)
Anoicis , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Serina Proteasas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Serina Endopeptidasas
16.
Int J Mol Sci ; 15(7): 12442-57, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25026174

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Previous studies have noted the induction of endoplasmic reticulum stress or apurinic endonuclease 1 (APE1) expression in many tumors. Therefore, the aim of this study was to investigate the relationship between endoplasmic reticulum (ER stress) and APE1 in hepatocellular carcinoma. Here we investigate the expression of APE1 during ER stress in HepG2 and Huh-7 cell lines. Tunicamycin or brefeldin A, two ER stress inducers, increased APE1 and GRP78, an ER stress marker, expression in HepG2 and Huh-7 cells. Induction of APE1 expression was observed through transcription level in response to ER stress. APE1 nuclear localization during ER stress was determined using immunofluorescence assays in HepG2 cells. Furthermore, expression of Hepatitis B virus pre-S2∆ large mutant surface protein (pre-S2∆), an ER stress-induced protein, also increased GRP78 and APE1 expression in the normal hepatocyte NeHepLxHT cell line. Similarly, tumor samples showed higher expression of APE1 in ER stress-correlated liver cancer tissue in vivo. Our results demonstrate that ER stress and HBV pre-S2∆ increased APE1 expression, which may play an important role in resistance to chemotherapeutic agents or tumor development. Therefore, these data provide an important chemotherapeutic strategy in ER stress and HBV pre-S2∆-associated tumors.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Estrés del Retículo Endoplásmico , Brefeldino A/farmacología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Humanos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Tunicamicina/farmacología
17.
Neurosci Lett ; 818: 137533, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865186

RESUMEN

Hypercholesterolemia is a risk factor for Alzheimer's disease (AD). Plasma cholesterol does not pass the blood-brain barrier whereas its metabolite 27-hydroxycholesterol (27-OHC) can enter the brain. High 27-OHC in the brain has been suggested to mediate hypercholesterolemia-induced impairments of learning and memory through promoting amyloid-ß accumulation and facilitating synaptic disruption. In AD brains, the activity of histone deacetylase (HDAC) is elevated. Treating AD animals with HDAC inhibitors decreases amyloid-ß levels and synaptic damages, which leads to memory improvement. Whether HDAC activity is involved in the actions of 27-OHC is still uncertain. In this study, 4 weekly injections of 27-OHC/vehicle were given to rats followed by 3 daily injections of HDAC inhibitor trichostatin (TSA)/vehicle. The results of Morris water maze test reveal that all rats have intact spatial learning ability during the 5-d training phase. However, the behavioral performance during the probe trial was impaired by 27-OHC treatment, which was improved by adding TSA treatments. Furthermore, 27-OHC treatments reduced the hippocampal levels of acetylated histone H3, acetylated α tubulin, insulin-degrading enzyme and postsynaptic protein PSD-95, indicating that 27-OHC treatments may induce enhanced HDAC activity, decreased amyloid-ß clearance and synaptic disruption. All reduced levels returned to the basal levels by adding TSA treatments. These findings support our hypothesis that HDAC activity is enhanced following long-term exposure to excess 27-OHC.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de Histona Desacetilasas , Hipercolesterolemia , Animales , Ratas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Hipercolesterolemia/metabolismo , Aprendizaje Espacial
18.
Kaohsiung J Med Sci ; 40(6): 553-560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623867

RESUMEN

Working memory (WM) is a cognitive function important for guiding the on-going or upcoming behavior. A memory-related protein Arc (activity-regulated cytoskeleton-associated protein) is implicated in long-term memory consolidation. Recent evidence further suggests the involvement of hippocampal Arc in spatial WM. The medial prefrontal cortex (mPFC) is a key brain region mediating WM. However, the role of mPFC Arc in WM is still uncertain. To investigate whether mPFC Arc protein is involved in WM performance, delayed non-match to sample (DNMS) T-maze task was performed in rats with or without blocking new synthesis of mPFC Arc. In DNMS task, a 10-s or 30-s delay between the sample run and the choice run was given to evaluate WM performance. To block new Arc protein synthesis during the DNMS task, Arc antisense oligodeoxynucleotides (ODNs) were injected to the bilateral mPFC. The results show that, in rats without surgery for cannula implantation and subsequent intracerebral injection of ODNs, WM was functioning well during the DNMS task with a delay of 10 s but not 30 s, which was accompanied with a significantly increased level of mPFC Arc protein, indicating a possible link between enhanced Arc protein expression and the performance of WM. After preventing the enhancement of mPFC Arc protein expression with Arc antisense ODNs, rat's WM performance was impaired. These findings support enhanced mPFC Arc protein expression playing a role during WM performance.


Asunto(s)
Proteínas del Citoesqueleto , Memoria a Corto Plazo , Proteínas del Tejido Nervioso , Corteza Prefrontal , Animales , Corteza Prefrontal/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Masculino , Memoria a Corto Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratas , Aprendizaje por Laberinto/fisiología , Ratas Sprague-Dawley
19.
Ann Surg ; 258(6): 1103-10, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23295319

RESUMEN

OBJECTIVE: To investigate whether recombinant thrombomodulin containing all the extracellular domains (rTMD123) has therapeutic potential against aneurysm development. SUMMARY BACKGROUND DATA: The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by chronic inflammation and proteolytic degradation of extracellular matrix. Thrombomodulin, a transmembrane glycoprotein, exerts anti-inflammatory activities such as inhibition of cytokine production and sequestration of proinflammatory high-mobility group box 1 (HMGB1) to prevent it from engaging the receptor for advanced glycation end product (RAGE) that may sustain inflammation and tissue damage. METHODS: The in vivo effects of treatment and posttreatment with rTMD123 on aortic dilatation were measured using the CaCl2-induced AAA model in mice. RESULTS: Characterization of the CaCl2-induced model revealed that HMGB1 and RAGE, both localized mainly to macrophages, were persistently upregulated during a 28-day period of AAA development. In vitro, rTMD123-HMGB1 interaction prevented HMGB1 binding to macrophages, thereby prohibiting activation of HMGB1-RAGE signaling in macrophages. In vivo, short-term treatment with rTMD123 upon AAA induction suppressed the levels of proinflammatory cytokines, HMGB1, and RAGE in the aortic tissue; reduced the infiltrating macrophage number; and finally attenuated matrix metalloproteinase production, extracellular matrix destruction, and AAA formation without disturbing vascular calcification. Consistently, posttreatment with rTMD123 seven days after AAA induction alleviated vascular inflammation and retarded AAA progression. CONCLUSIONS: These data suggest that rTMD123 confers protection against AAA development. The mechanism of action may be associated with reduction of proinflammatory mediators, blockade of macrophage recruitment, and suppression of HMGB1-RAGE signaling involved in aneurysm formation and downstream macrophage activation.


Asunto(s)
Aneurisma de la Aorta Abdominal/prevención & control , Trombomodulina/uso terapéutico , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Cloruro de Calcio/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/fisiología , Proteínas Recombinantes/uso terapéutico
20.
Artículo en Inglés | MEDLINE | ID: mdl-21765855

RESUMEN

In Traditional Chinese Medicine (TCM) diagnostics, it is an important issue to study the degree of agreement among several distinct practitioners. In order to study the reliability of TCM diagnostics, we have to design an experiment to simultaneously deal with both of the cases when the data is ordinal and when there are many TCM practitioners. In this study, we consider a reliability measure called "Krippendorff's alpha" to investigate the agreement of tongue diagnostics in TCM. Besides, since it is not easy to obtain a large data set with patients rated simultaneously by many TCM practitioners, we use the renowned "bootstrapping" to obtain a 95% confidence interval for the Krippendorff's alpha. The estimated Krippendorff's alpha for the agreement among ten physicians that discerned fifteen randomly chosen patients is 0.7343, and the 95% bootstrapping confidence interval for the true alpha coefficient is [0.6570, 0.7349]. The data was collected and analyzed at the Department of Traditional Chinese Medicine, Changhua Christian Hospital (CCH) in Taiwan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA