Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gynecol Oncol ; 181: 125-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159362

RESUMEN

OBJECTIVE: To determine the maximum tolerated dose (MTD) of paclitaxel combined with a fixed dose of cisplatin (75 mg/m2) delivered via hyperthermic intraperitoneal chemotherapy (HIPEC) to patients with ovarian cancer. METHODS: This multicenter Phase I trial employed a Bayesian Optimal Interval (BOIN) design. The MTD was determined to have a target dose-limiting toxicity (DLT) rate of 25%. The starting dose was 175 mg/m2. The Data and Safety Monitoring Board made decisions regarding dose escalation or de-escalation in increments of 25 mg/m2 for subsequent patient cohorts, up to a maximum sample size of 30 or 12 patients treated at a given dose. RESULTS: Twenty-one patients participated in this study. Among the three evaluable patients who received 150 mg/m2 paclitaxel, no DLTs were observed. Among the 12 evaluable patients who received 175 mg/m2 paclitaxel, two reported DLTs: one had grade 4 neutropenia and one had grade 4 anemia, neutropenia, and leukopenia. Four of the six evaluable patients who received 200 mg/m2 paclitaxel reported DLTs: one patient had grade 4 diarrhea, one had grade 3 kidney injury, and two had grade 4 anemia. The isotonic estimate of the DLT rate in the 175 mg/m2 dose group was 0.17 (95% confidence interval, 0.02-0.42), and this dose was selected as the MTD. CONCLUSION: Paclitaxel, when combined with a fixed dose of cisplatin (75 mg/m2), can be safely administered intraperitoneally at a dose of 175 mg/m2 in patients with ovarian cancer who received HIPEC (43 °C, 90 min) following cytoreductive surgery.


Asunto(s)
Anemia , Neutropenia , Neoplasias Ováricas , Humanos , Femenino , Cisplatino , Paclitaxel , Quimioterapia Intraperitoneal Hipertérmica , Dosis Máxima Tolerada , Teorema de Bayes , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Ováricas/terapia , Neutropenia/inducido químicamente , Anemia/etiología , Relación Dosis-Respuesta a Droga
2.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35896696

RESUMEN

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Pramipexol/uso terapéutico , Pramipexol/metabolismo , Pramipexol/farmacología , Enfermedad de Parkinson/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Astrocitos/metabolismo , Lipopolisacáridos/farmacología , Autofagia , Ratones Endogámicos C57BL
3.
Acta Neurol Scand ; 146(1): 75-81, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35466436

RESUMEN

OBJECTIVE: To determine the function of each type of peripheral nerve fiber and investigate the possible role of levodopa (LD) in peripheral neuropathy (PN) in Parkinson's disease (PD) patients. METHODS: We enrolled 60 patients with idiopathic PD. All PD patients were divided into three groups: levodopa exposure >3 years (LELD), levodopa exposure ≤3 years (SELD) and de novo patients with PD (NOLD). The current perception threshold (CPT), which was measured by Neurometer at 2000, 250 and 5 Hz, the level of homocysteine, Vitamin B12 and folic acid in plasma, were compared with those of sex- and age-matched healthy controls (HCs). RESULTS: Current perception threshold was higher at 250 Hz (p < .05) and 5 Hz (p < .05) in the LELD group than the NOLD, SELD, and control group. CPT was lower at 5 Hz in the NOLD than in the HCs group (p < .05). The CPT of the more affected side of PD patients was positively correlated with H-Y stage at 5 Hz current stimulation (r = .42, p = .01). Multivariate logistic regression analysis showed that elevated homocysteine levels were the risk factor of sensory nerve injury in PD patients (p < .01). Serum homocysteine levels were positively correlated with levodopa (LD) daily dose, LD equivalent daily dose, and LD cumulative lifetime dose (p < .05). CONCLUSIONS: Peripheral neuropathy in PD patients can occur in the early stage of PD exhibiting as hyperesthesia and is fiber selectivity, especially for Aδ and C nerve fibers. PN in PD patients is related to PD itself and long-term LD exposure. Elevated plasma homocysteine is a risk factor for PN in PD patients.


Asunto(s)
Enfermedad de Parkinson , Enfermedades del Sistema Nervioso Periférico , Antiparkinsonianos/efectos adversos , Homocisteína , Humanos , Levodopa/efectos adversos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/inducido químicamente
4.
Biol Pharm Bull ; 44(11): 1688-1696, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34433707

RESUMEN

Microglial activation and neuroinflammation induced by amyloid ß (Aß) play pivotal roles in Alzheimer's disease (AD) pathogenesis. Astragaloside IV (AS-IV) is one of the major active compounds of the traditional Chinese medicine Astmgali Radix. It has been reported that AS-IV could protect against Aß-induced neuroinflammation and cognitive impairment, but the underlying mechanisms need to be further clarified. In this study, the therapeutic effects of AS-IV were investigated in an oligomeric Aß (oAß) induced AD mice model. The effects of AS-IV on microglial activation, neuronal damage and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were further studied. Different doses of AS-IV were administered intragastrically once a day after intracerebroventricularly oAß injection. Results of behavioral experiments including novel object recognition (NOR) test and Morris water maze (MWM) test revealed that AS-IV administration could significantly ameliorate oAß-induced cognitive impairment in a dose dependent manner. Enzyme linked immunosorbent assay (ELISA) results showed that increased levels of reactive oxygen species (ROS), tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß) and IL-6 in hippocampal tissues induced by oAß injection were remarkably inhibited after AS-IV treatment. OAß induced microglial activation and neuronal damage was significantly suppressed in AS-IV-treated mice brain, observed in immunohistochemistry results. Furthermore, oAß upregulated protein expression of NADPH oxidase subunits gp91phox, p47phox, p22phox and p67phox were remarkably reduced by AS-IV in Western blotting assay. These results revealed that AS-IV could ameliorate oAß-induced cognitive impairment, neuroinflammation and neuronal damage, which were possibly mediated by inhibition of microglial activation and down-regulation of NADPH oxidase protein expression. Our findings provide new insights of AS-IV for the treatment of neuroinflammation related diseases such as AD.


Asunto(s)
Enfermedad de Alzheimer , Planta del Astrágalo/química , Disfunción Cognitiva , Microglía/efectos de los fármacos , NADPH Oxidasas/metabolismo , Enfermedades Neuroinflamatorias , Saponinas/farmacología , Triterpenos/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos adversos , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones Endogámicos ICR , NADP , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Neuronas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fitoterapia , Especies Reactivas de Oxígeno/metabolismo , Saponinas/uso terapéutico , Triterpenos/uso terapéutico
5.
J Sep Sci ; 44(24): 4327-4342, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34665523

RESUMEN

Er Shen Zhenwu Decoction is a prescription for treating chronic heart failure of heart and kidney yang deficiency, while its active ingredients remain unclear and difficult to identify. This paper aims to apply a rapid assay strategy of ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to collect the mass spectrometry data of Er Shen Zhenwu Decoction and its decomposed recipes (monarch, minister, and assist). By comparing with retention time and MSE fragmentation patterns, 67 and 34 components in vitro and in vivo were identified, respectively, the main ingredients include saponins, terpenes, alkaloids, phenolic acids, tanshinone, urea, steroids, aromatics, organic acids, carbohydrates, and so forth, of which the monarch medicine > minister medicine > assist medicine. By comparison with reference standards, paeoniflorin, rosmarinic acid, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1 and atractylenolide III were identified in vitro and paeoniflorin, ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1 were identified in vivo. In this study, the chemical ingredients of Er Shen Zhenwu Decoction were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry technology and each compound was grouped into the decomposed recipes. The identified substances can be used as references for Er Shen Zhenwu Decoction quality control and potential medicinal substances in chronic heart failure of heart and kidney yang deficiency treatment.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Espectrometría de Masas/métodos , Medicina Tradicional China , Animales , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley
6.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5512-5521, 2021 Nov.
Artículo en Zh | MEDLINE | ID: mdl-34951202

RESUMEN

Zhenwu Decoction(ZWD) has a history of more than 1 800 years in traditional Chinese medicine(TCM), which is used to treat various diseases characterized by Yangqi deficiency and exuberant water and dampness. It is currently the classic prescription for the treatment of chronic heart failure(CHF). This study provides a basis for the treatment of CHF with ZWD by elaborating the traditional efficacy, theoretical basis, and underlying mechanism of the prescription. Based on the research methods and judgment basis of quality markers(Q-markers) of Chinese medicine, the Q-markers of ZWD in the treatment of CHF were predicted from the aspects of transfer and traceability, specificity, effectiveness, compatibility environment, measurability, and processing. Demethyl-coclaurine,benzoylaconine, atractylenolide Ⅲ, paeoniflorin, 6-gingerol, 8-gingerol, pachymic acid, and dehydrotumulosic acid can be used as Q-markers of ZWD for treating CHF. The result provides a reference for exploring the pharmacodynamic substances of ZWD in the treatment of CHF.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Biomarcadores , Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Medicina Tradicional China
7.
Pharmazie ; 75(7): 344-347, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32635978

RESUMEN

Amyloid ß (Aß) induced microglial activation and attendant neuroinflammation play pivotal roles in Alzheimer's disease (AD) pathogenesis. Matrine is a natural anti-inflammation compound from the Chinese herbal medicine Sophora flavescens Ait. (Kushen). This study aimed to investigate the effects of matrine on memory deficit and neuroinflammation in an oligomeric Aß (oAß)-induced AD mice model. Whether microglial activation and NADPH oxidase were involved in these effects were further studied. Different doses of matrine (10, 20, or 40 mg/kg) were intragastrically administered once a day after intracerebroventricular oAß injection (2.5 µg/µl, 4 µl). 15 days after the oAß injection, behavioral experiments including novel object recognition (NOR) test and Morris water maze (MWM) test were performed. 21 days after the oAß injection, concentration of ROS, TNF-α, IL-1ß and IL-6 as well as expression of NADPH oxidase subunits gp91phox and p47phox in mice hippocampal tissues were assessed, and microglial activation were evaluated by Iba-1 immunohistochemical staining. Results of NOR test and MWM test revealed that oAß injection could remarkably impair learning and memory function in AD mice, and matrine administration could significantly ameliorate the impairment. ROS, TNF-α, IL-1ß and IL-6 levels increased after oAß injection, while matrine could significantly reduce the concentrations of these inflammatory factors. OAß induced protein expression of NADPH oxidase subunits gp91phox and p47phox were also significantly reduced by matrine. Iba-1 immunohistochemistry results showed less activated microglia in matrine-treated mice brain. These results indicate that matrine could ameliorate learning and memory impairment and neuroinflammation induced by oAß injection. These effects were found to be mediated through inhibition of microglial activation and NADPH oxidase expression in hippocampal tissue. The results suggest that matrine may be a valuable natural compound with therapeutic potential against AD.


Asunto(s)
Alcaloides/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Quinolizinas/farmacología , Alcaloides/administración & dosificación , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Quinolizinas/administración & dosificación , Matrinas
8.
Arch Insect Biochem Physiol ; 98(1): e21450, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29400415

RESUMEN

Bombyx mori is an economic insect of the Lepidoptera. Its posterior silk gland (PSG) is an important organ for fibroin synthesis. In order to study the occurrence of apoptosis in PSG and the role of PI3K/Akt signaling pathway during spinning period, changes in morphology of silk gland, expressions of fibroin components Fib-H, Fib-L and P25 and Akt, TOR2, P70S6K and S6 in PI3K/Akt pathway, expressions of apoptosis related genes caspase-3, caspase-9 and activity of caspase-3 were explored. The results showed that the morphology of silk gland dramatically degenerated; transcription of Fib-H, Fib-L, and P25 gradually declined with time; and Fib-L protein level reduced by 0.6-fold at 72 h. Moreover, the transcription levels of Akt, TOR2, P70S6K, and S6 also decreased by 0.3-, 0.8-, 0.7-, and 0.1-fold, respectively, indicating that the downregulation of PI3K/Akt signaling pathway could lead to reduction in fibroin synthesis. In addition, the transcription levels of caspase-3 and caspase-9 increased by 1.3- and 3.6-fold, respectively, and the enzyme activity of caspase-3 grew at a maximum of 1.6-fold. The results showed the occurrence of apoptosis in PSG during spinning period. In conclusion, the present study indicated that both the decline in fibroin components and the increase in apoptosis-related genes were regulated by PI3K/Akt signaling pathway during spinning period, which shed new light on the functions of PI3K/Akt signaling pathway.


Asunto(s)
Apoptosis/fisiología , Bombyx/metabolismo , Animales , Bombyx/crecimiento & desarrollo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Fibroínas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Seda/biosíntesis
9.
Arch Insect Biochem Physiol ; 99(1): e21470, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29709078

RESUMEN

Various nanoparticles, such as silver nanoparticles (AgNPs) and titanium nanoparticles (TiO2 NPs) are increasingly used in industrial processes. Because they are released into the environment, research into their influence on the biosphere is necessary. Among its other effects, dietary TiO2 NPs promotes silk protein synthesis in silkworms, which prompted our hypothesis that TiO2 NPs influence protein kinase B (Akt)/Target of rapamycin (Tor) signaling pathway (Akt/Tor) signaling in their silk glands. The Akt/Tor signaling pathway is a principle connector integrating cellular reactions to growth factors, metabolites, nutrients, protein synthesis, and stress. We tested our hypothesis by determining the influence of dietary TiO2 NPs (for 72 h) and, separately, of two Akt/Tor pathway inhibitors (LY294002 and rapamycin) on expression of Akt/Tor signaling pathway genes and proteins in the silk glands. TiO2 NPs treatments led to increased accumulation of mRNAs for Akt, Tor1 and Tor2 by 1.6-, 12.1-, and 4.8-fold. Dietary inhibitors led to 2.6- to 4-fold increases in mRNAs encoding Akt and substantial decreases in mRNAs encoding Tor1 and Tor2. Western blot analysis showed that dietary TiO2 NPs increased the phosphorylation of Akt and its downstream proteins. LY294002 treatments led to inhibition of Akt phosphorylation and its downstream proteins and rapamycin treatments similarly inhibited the phosphorylation of Tor-linked downstream proteins. These findings support our hypothesis that TiO2 NPs influence Akt/Tor signaling in silk glands. The significance of this work is identification of specific sites of TiO2 NPs actions.


Asunto(s)
Bombyx/efectos de los fármacos , Glándulas Exocrinas/efectos de los fármacos , Proteínas de Insectos/genética , Nanopartículas del Metal , Transducción de Señal/efectos de los fármacos , Titanio/farmacología , Alimentación Animal/análisis , Animales , Bombyx/crecimiento & desarrollo , Bombyx/fisiología , Cromonas/farmacología , Dieta , Inhibidores Enzimáticos/farmacología , Glándulas Exocrinas/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Morfolinas/farmacología , Transducción de Señal/fisiología , Seda/biosíntesis , Seda/efectos de los fármacos , Sirolimus/farmacología
10.
Biochem Biophys Res Commun ; 455(3-4): 353-7, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25446097

RESUMEN

It has been demonstrated that acid sensing ionic channels (ASICs) are present in the central and peripheral nervous system of mammals, including the retina. However, it remains unclear whether the zebrafish retina also expresses ASICs. In the present study, the expression and distribution of zasic1 were examined in the retina of zebrafish. Both zasic1 mRNA and protein expressions were detected in the adult zebrafish retina. A wide distribution of ASIC1 in zebrafish retina was confirmed using whole mount in situ hybridization and immunohistochemistry study. Acidosis-induced currents in the isolated retinal ganglion cells (RGCs) were also recorded using whole cell patch clamping. Moreover, blockade of ASICs channel significantly reduced the locomotion of larval zebrafish in response to light exposure. In sum, our data demonstrate the presence of ASIC1 and its possible functional relevance in the retina of zebrafish.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Retina/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/genética , Canales Iónicos Sensibles al Ácido/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Larva , Luz , Microscopía Fluorescente , Actividad Motora , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Células Ganglionares de la Retina/citología , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
11.
Chem Commun (Camb) ; 60(44): 5723-5726, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742267

RESUMEN

Over the past decade, significant progress has been made in the direct C-H acylation of naphthalenes, occurring at the α or ß-positions to yield valuable ketones through Friedel-Crafts acylation or transition-metal-catalysed carbonylative coupling reactions. Nevertheless, highly regioselective acylation of naphthalenes remains a formidable challenge. Herein, we developed a nickel-catalysed reductive ring-opening reaction of 7-oxabenzonorbornadienes with acyl chlorides as the electrophilic coupling partner, providing a new method for the exclusive preparation of ß-acyl naphthalenes.

12.
Microorganisms ; 12(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276196

RESUMEN

Subterranean karst caves are windows into the terrestrial subsurface to deconstruct the dimensions of mycobiome fingerprints. However, impeded by the constraints of remote locations, the inaccessibility of specimens and technical limitations, the mycobiome of subterranean karst caves has remained largely unknown. Weathered rock and sediment samples were collected from Luohandu cave (Guilin, Southern China) and subjected to Illumina Hiseq sequencing of ITS1 genes. A total of 267 known genera and 90 known orders in 15 phyla were revealed in the mycobiomes. Ascomycota dominated all samples, followed by Basidiomycota and Mortierellomycota. The sediments possessed the relatively highest alpha diversity and were significantly different from weathered rocks according to the diversity indices and richness metrics. Fifteen families and eight genera with significant differences were detected in the sediment samples. The Ca/Mg ratio appeared to significantly affect the structure of the mycobiome communities. Ascomycota appeared to exert a controlling influence on the mycobiome co-occurrence network of the sediments, while Ascomycota and Basidiomycota were found to be the main phyla in the mycobiome co-occurrence network of weathered rocks. Our results provide a more comprehensive dimension to the mycobiome fingerprints of Luohandu cave and a new window into the mycobiome communities and the ecology of subterranean karst cave ecosystems.

13.
Open Life Sci ; 19(1): 20220834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465343

RESUMEN

Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.

14.
Sleep Med ; 115: 155-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367357

RESUMEN

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sueño de Onda Lenta , Humanos , Enfermedad de Parkinson/complicaciones , Sueño REM , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/complicaciones , Estudios Transversales , Polisomnografía , Hipotonía Muscular , Cafeína , Progresión de la Enfermedad
15.
Microbiol Spectr ; 11(3): e0442422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042774

RESUMEN

Terrestrial organic carbon such as lignin is an important component of the global marine carbon. However, the structural complexity and recalcitrant nature of lignin are deemed challenging for biodegradation. It has been speculated that bacteria play important roles in lignin degradation in the marine system. However, the extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, two bacterial consortia capable of degrading alkali lignin (a model compound of lignin), designated LIG-B and LIG-S, were enriched from the nearshore sediments of the East and South China Seas. Consortia LIG-B and LIG-S mainly comprised of the Proteobacteria phylum with Nitratireductor sp. (71.6%) and Halomonas sp. (91.6%), respectively. Lignin degradation was found more favorable in consortium LIG-B (max 57%) than in LIG-S (max 18%). Ligninolytic enzymes laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) capable of decomposing lignin into smaller fragments were all active in both consortia. The newly emerged low-molecular-weight aromatics, organic acids, and other lignin-derived compounds in biotreated alkali lignin also evidently showed the depolymerization of lignin by both consortia. The lignin degradation pathways reconstructed from consortium LIG-S were found to be more comprehensive compared to consortium LIG-B. It was further revealed that catabolic genes, involved in the degradation of lignin and its derivatives through multiple pathways via protocatechuate and catechol, are present not only in lignin-degrading consortia LIG-B and LIG-S but also in 783 publicly available metagenomic-assembled genomes from nine nearshore regions. IMPORTANCE Numerous terrigenous lignin-containing plant materials are constantly discharged from rivers and estuaries into the marine system. However, only low levels of terrigenous organic carbon, especially lignin, are detected in the global marine system due to the abundance of active heterotrophic microorganisms driving the carbon cycle. Simultaneously, the lack of knowledge on lignin biodegradation has hindered our understanding of the oceanic carbon cycle. Moreover, bacteria have been speculated to play important roles in the marine lignin biodegradation. Here, we enriched two bacterial consortia from nearshore sediments capable of utilizing alkali lignin for cell growth while degrading it into smaller molecules and reconstructed the lignin degradation network. In particular, this study highlights that marine microorganisms in nearshore regions mostly undergo similar pathways using protocatechuate and catechol as ring-cleavage substrates to drive lignin degradation as part of the oceanic carbon cycle, regardless of whether they are in sediments or water column.


Asunto(s)
Lignina , Consorcios Microbianos , Lignina/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Álcalis , Carbono/metabolismo
16.
Aging Dis ; 14(3): 964-1678, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191418

RESUMEN

Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, ß-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.

17.
J Neuroimmunol ; 382: 578174, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573633

RESUMEN

We describe three cases of overlapping Epstein-Barr virus (EBV) Encephalitis and Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy (GFAP-A). The three cases all presented with initial symptoms of fever, headache, coma, and posture tremor of the upper limbs, then followed by limb weakness and dysuria. All of the three cases were on ventilators. Case 1 and 2 improved dramatically after intravenous methylprednisoloneand immunoglobulin treatment. However, case 3 presented dyspneic, and died from gastrointestinal hemorrhage. The GFAP-A triggered by EBV intracranial infection could initially masquerade as EBV encephalitis only, and the detection of GFAP antibody is essential for differentiation.


Asunto(s)
Astrocitos , Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Infecciones por Virus de Epstein-Barr , Proteína Ácida Fibrilar de la Glía , Humanos , Anticuerpos , Astrocitos/inmunología , Astrocitos/metabolismo , Autoanticuerpos , Encefalitis/complicaciones , Encefalitis/inmunología , Encefalitis/terapia , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/terapia , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/inmunología , Herpesvirus Humano 4 , Inmunoglobulinas Intravenosas , Metilprednisolona/uso terapéutico , Glucocorticoides/uso terapéutico , Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/terapia , Diagnóstico Diferencial
18.
iScience ; 26(11): 108130, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876795

RESUMEN

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

19.
Parkinsonism Relat Disord ; 112: 105477, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37285793

RESUMEN

BACKGROUND: PLA2G6-associated neurodegeneration (PLAN) can be categorized into infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (aNAD), neurodegeneration with brain iron accumulation (NBIA), and early-onset parkinsonism (EOP). OBJECTIVES: To determine the genotype-phenotype association in PLAN. METHODS: "PLA2G6" or "PARK14" or "phospholipase A2 group VI" or "iPLA2ß" were searched across MEDLINE from June 23, 1997, to March 1, 2023. A total of 391 patients were identified, and 340 patients of them were finally included in the assessment. RESULTS: The loss of function (LOF) mutation ratios were significantly different (p < 0.001), highest in INAD, followed by NBIA, aNAD, and EOP. Four ensemble scores (i.e., BayesDel, VARITY, ClinPred, and MetaRNN) were assessed to predict the deleteriousness of missense mutations and demonstrated significant differences (p < 0.001). Binary logistic regression analyses demonstrated that LOF mutations were independently associated with brain iron accumulation (p = 0.006) and ataxia (p = 0.025). CONCLUSIONS: LOF or more deleterious missense mutations are more likely to promote the development of serious phenotype of PLAN, and LOF mutations are independently associated with brain iron accumulation and ataxia.


Asunto(s)
Distrofias Neuroaxonales , Trastornos Parkinsonianos , Humanos , Mutación/genética , Trastornos Parkinsonianos/genética , Estudios de Asociación Genética , Distrofias Neuroaxonales/genética , Hierro , Ataxia , Fosfolipasas A2 Grupo VI/genética
20.
Front Pharmacol ; 13: 940999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935875

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss and cognitive dysfunction in the elderly, with amyloid-beta (Aß) deposition and hyperphosphorylation of tau protein as the main pathological feature. Nuclear factor 2 (Nrf2) is a transcription factor that primarily exists in the cytosol of hippocampal neurons, and it is considered as an important regulator of autophagy, oxidative stress, and inflammation. Total saikosaponins (TS) is the main bioactive component of Radix bupleuri (Chaihu). In this study, it was found that TS could ameliorate cognitive dysfunction in APP/PS1 transgenic mice and reduce Aß generation and senile plaque deposition via activating Nrf2 and downregulating the expression of ß-secretase 1 (BACE1). In addition, TS can enhance autophagy by promoting the expression of Beclin-1 and LC3-II, increasing the degradation of p62 and NDP52 and the clearance of phosphorylated tau (p-tau), and reducing the expression of p-tau. It can also downregulate the expression of nuclear factor-κB (NF-κB) to inhibit the activation of glial cells and reduce the release of inflammatory factors. In vitro experiments using PC12 cells induced by Aß, TS could significantly inhibit the aggregation of Aß and reduce cytotoxicity. It was found that Nrf2 knock-out weakened the inhibitory effect of TS on BACE1 and NF-κB transcription in PC12 cells. Moreover, the inhibitory effect of TS on BACE1 transcription was achieved by promoting the binding of Nrf2 and the promoter of BACE1 ARE1. Results showed that TS downregulated the expression of BACE1 and NF-κB through Nrf2, thereby reducing the generation of Aß and inhibiting neuroinflammation. Furthermore, TS can ameliorate synaptic loss and alleviate oxidative stress. In gut microbiota analysis, dysbiosis was demonstrated in APP/PS1 transgenic mice, indicating a potential link between gut microbiota and AD. Furthermore, TS treatment reverses the gut microbiota disorder in APP/PS1 mice, suggesting a therapeutic strategy by remodeling the gut microbe. Collectively, these data shows that TS may serve as a potential approach for AD treatment. Further investigation is needed to clarify the detailed mechanisms underlying TS regulating gut microbiota and oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA