RESUMEN
The dorsal nucleus of lateral lemniscus (DNLL) is a nucleus in the auditory ascending pathway, and casts inhibitory efferent projections to the inferior colliculus. Studies on the DNLL are less than studies on the auditory brain stem and inferior colliculus. To date, there is no information about response characteristics of neurons in DNLL of albino mouse. Under free field conditions, we used extracellular single unit recording to study the acoustic signal characteristics of DNLL neurons in Kunming mice (Mus musculus). Transient (36%) and ongoing (64%) firing patterns were found in 96 DNLL neurons. Neurons with different firing patterns have significant differences in characteristic frequency and minimal threshold. We recorded frequency tuning curves (FTCs) of 87 DNLL neurons. All of the FTCs exhibit an open "V" shape. There is no significant difference in FTCs between transient and ongoing neurons, but among the ongoing neurons, the FTCs of sustained neurons are sharper than those of onset plus sustained neurons and pauser neurons. Our results showed that the characteristic frequency of DNLL neurons of mice was not correlated with depth, supporting the view that the DNLL of mouse has no frequency topological organization through dorsal-ventral plane, which is different from cats and some other animals. Furthermore, by using rate-intensity function (RIF) analysis the mouse DNLL neurons can be classified as monotonic (60%), saturated (31%) and non-monotonic (8%) types. Each RIF type includes transient and ongoing firing patterns. Dynamic range of the transient firing pattern is smaller than that of ongoing firing ones (P < 0.01), suggesting that the inhibitory inputs may underlie the formation of transient firing pattern. Multiple firing patterns and intensity coding of DNLL neurons may derive from the projections from multiple auditory nuclei, and play different roles in auditory information processing.
Asunto(s)
Vías Auditivas , Neuronas , Animales , Tronco Encefálico , Gatos , Colículos Inferiores , Ratones , PuenteRESUMEN
OBJECTIVE: To examine the clinical effects of Yisui Shengxue Granules () in the treatment of ß-thalassemia and explore its mechanism on DNA methylation levels. METHODS: A randomized placebo-controlled double-blinded trial was conducted. Forty patients with ß-thalassemia were recruited and distributed randomly by envelope method into an experimental group and a control group, 20 patients in each group. The patients were given Yisui Shengxue Granules in the experimental group and placebo in the control group (12 g/bag three times a day) during a 3-month intervention. Before and after 1, 2, and 3 months of treatment, peripheral intravenous blood was sampled, and blood parameters such as hemoglobin (Hb), red blood cells (RBCs), reticulocytes (Ret), and fetal hemoglobin (HbF) were analyzed. Mononuclear cells from 5 patients, who showed an obvious treatment effect, were isolated by density gradient centrifugation. DNA methylation was analyzed using an Affymetrix USA GeneChip Human Promoter 1.0 Array and Input-promoter 1.0. RESULTS: Compared with pre-treatment, there was an obvious increase in Hb and RBCs counts after 1, 2, and 3 months in the experiment group (P<0.01 or P<0.05). Meanwhile, HbF increased from the 2nd to the 3rd month (P<0.05). In the control group, Hb and RBCs showed no obvioas change. After 3-month treatment, DNA methylation results from 5 patients revealed that there were 24 hypomethylated genes and 3,685 hypermethylated genes compared with pre-treatment. Genes of insulin-like growth factor 1 receptor (IGF1R) and Janus kinase 3 (JAK3) revealed the most relations with other genes (degree: 21) and genes of 1-phosphatidylinositol-4, 5-bisphosphate phosphodiesterase gamma 2 (PLCG2) and mitogen-activated protein kinase 10 (MAPK10) showed a stronger intermediary role (betweenness centrality=0.04). CONCLUSIONS: JAK3 and MAPK10 are two key genes in bone marrow and the lymphatic system, and JAK3 is likely to be related to hematopoietic cytokines in the process of early hematopoiesis. (Registration No. NCT01549080).
Asunto(s)
Metilación de ADN/genética , Medicamentos Herbarios Chinos/uso terapéutico , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Adolescente , Medicamentos Herbarios Chinos/farmacología , Eritrocitos/efectos de los fármacos , Femenino , Genoma Humano , Hemoglobinas/metabolismo , Humanos , Masculino , Transducción de SeñalRESUMEN
The inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within IC, contralateral IC through the commissure of IC and from the auditory cortex (AC). These excitatory and inhibitory inputs from both ascending and descending auditory pathways contribute significantly to auditory response properties and temporal signal processing in IC. The present study examines the contribution of gamma-aminobutyric acid-ergic (GABAergic) inhibition of dorsal nucleus of the lateral lemniscus (DNLL) in influencing the response properties and amplitude sensitivity of contralateral IC neurons using focal electrical stimulation of contralateral DNLL and by the application of bicuculline to the recording site of modulated IC neurons. Focal electrical stimulation of contralateral DNLL produces inhibition (78.1%), facilitation (7.1%) or no effect (14.8%) in the number of spikes, firing duration and the first-spike latency of modulated IC neurons. The degree of modulation is inversely correlated to the difference in best frequency (BF) between electrically stimulated DNLL neurons and modulated IC neurons (pâ¯<â¯0.01). The application of bicuculline to the recording site of modulated IC neurons abolishes the inhibitory effect of focal electrical stimulation of DNLL neurons. DNLL inhibition also modulates the amplitude sensitivity of IC neurons by changing the dynamic range (DR) and the slope of rate-amplitude function (RAF) of modulated IC neurons. Possible biological significance of these findings in relation to auditory signal processing is discussed.
Asunto(s)
Vías Auditivas/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Neuronas GABAérgicas/fisiología , Colículos Inferiores/fisiología , Inhibición Neural , Estimulación Acústica , Animales , Vías Auditivas/metabolismo , Estimulación Eléctrica , Femenino , Neuronas GABAérgicas/metabolismo , Colículos Inferiores/metabolismo , Masculino , Ratones , Tiempo de Reacción , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
In this work, a cultivation system with daily recycling of the post-harvest culture broth was set up and performed in order to reuse the water and nutrients in pretreated anaerobically digested swine manure, which was used as media to cultivate Chlorella vulgaris (UTEX 2714) at different recycling ratios. Results showed that the alga grew well in the system with an accumulative algal biomass and productivity of 1.68-3.47g/L and 234.1-532.2mg/L/d, respectively, at the end of the cultivation. Additionally, chemical compositions in this alga varied with the change of recycling ratios, and the highest productivities of carbohydrate, protein and lipids (76.4, 257.2 and 183.7mg/L/d, respectively) were obtained in the system with a recycling ratio of 1/4 or 1/6. Fatty acid profiles indicated that this alga could be used as a good-quality biodiesel feedstock with a biodiesel productivity of 9.65-40.1mg/L/d.
Asunto(s)
Biocombustibles , Chlorella vulgaris , Estiércol , Reciclaje , Animales , Biomasa , Chlorella , Lípidos , PorcinosRESUMEN
Yisui Shengxue granules, which is a Chinese traditional medicine, can increase hemoglobin, red blood cells, and Ret of thalassemia patients with mild, moderate, and severe anemia and thus relieve clinical anemia symptoms. Studies on mechanism found that Yisui Shengxue granules can increase the proliferation ability of hematopoietic stem cells. Emodin promoted colony forming of hematopoietic stem cells. Yisui Shengxue granules can increase the activity of GSH-PX in bone marrow blood and decreased the severity of inclusion bodies on the cytomembrane of RBCs. YSSXG attenuated anemia symptoms in patients with thalassemia mostly by increasing the proliferation of hematopoietic stem cells and decreasing the hemolysis of RBCs.
RESUMEN
Cellulose nanofibers (diameter=10-70 nm) were produced using chemical treatments (alkali treatment and bleaching) and high pressure homogenization from de-pectinated sugar beet pulp (DSBP). Chemical analysis and Fourier transform infrared spectroscopy (FTIR) indicated that the chemical treatments greatly removed the hemicellulose and lignin from the DSBP and significantly increased the cellulose content. The crystallinity of the cellulose nanofibers increased from 35.67% to 69.62% after alkali treatment and bleaching. The thermal degradation temperature of DSBP cellulose nanofibers was 271.7 °C which was found to be 47.3 °C higher than that of the untreated DSBP. The DSBP cellulose nanofibers can be preferably used as reinforcement in the biocomposite material at high temperature.
Asunto(s)
Beta vulgaris/química , Celulosa/química , Nanofibras/química , Pectinas/aislamiento & purificación , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos XRESUMEN
The objective of this study was to investigate the therapeutic biological mechanism of Yisui Shengxue Granule (YSSXG), a complex Chinese medicine, on the hemolysis and anemia of erythrocytes from patient with thalassemia disease. Sixteen patients with thalassemia (8 cases of α-thalassemia and 8 cases of ß-thalassemia) disease were collected and treated with YSSXG for 3 months. The improvements of blood parameter demonstrated that YSSXG had a positive clinical effect on patients with thalassemia disease. For patients with α-thalassemia disease, RT-PCR showed that YSSXG upregulated the relative mRNA expression level of α-globin to ß-globin and downregulated DNMT1, DNMT3a, and DNMT3b mRNA compared with pretreatment. Western blotting showed that YSSXG downregulated the expression of DNMT1 and DNMT3a. For patients with ß-thalassemia disease, the relative expression level of (A) γ-globin to α-globin had an increasing trend and the level of BCL11A mRNA expression obviously increased. For all patients, RT-PCR showed that YSSXG upregulated mRNA expression of SPTA1 and SPTB. Activities of SOD and GSH-Px significantly increased and MDA obviously reduced on erythrocyte and blood serum after YSSXG treatment. TEM showed that YSSXG decreased the content of inclusion bodies. Activities of Na(+)K(+)-ATPtase and T-ATPtase of erythrocyte increased significantly after YSSXG treatment. This study provides the basis for mechanisms of YSSXG on thalassemia suffering with hemolysis and anemia of erythrocytes from patient.