Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675251

RESUMEN

Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specification, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains unclear. This is because interruption of BMP signaling before or during neural induction causes severe effects on subsequent neural developmental processes. To examine the role of BMP signaling in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on neural induction and suppressed BMP signaling at different time points during gastrulation using a temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass BMP regulation on neural induction, induce the number of proliferating neural progenitors, and reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These results reveal the time window for the proliferation of neural progenitors during zebrafish development and a fine balance between BMP and Notch signaling in regulating the proliferation of neural progenitor cells.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células-Madre Neurales/metabolismo , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica
2.
Med Mycol ; 59(5): 498-504, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33099643

RESUMEN

Candida albicans bloodstream infection (BSI) is epidemiologically important because of its increasing frequency and serious outcome. Strain typing and delineation of the species are essential for understanding the phylogenetic relationship and clinical significance. Microsatellite CAI genotyping and multilocus sequence typing (MLST) were performed on 285 C. albicans bloodstream isolates from patients in Chang Gung Memorial Hospital at Linkou (CGMHL), Taiwan from 2003 to 2011. Data regarding demographics, comorbidities, risk factors, and clinical outcomes were recorded within adult patients with C. albicans BSI. Both CAI genotyping and MLST yielded comparable discriminatory power for C. albicans characterization. Besides, the distribution of CAI repetition showed a satisfactory phylogenetic association, which could be a good alternative method in the molecular phylogenetics of C. albicans and epidemiological studies. As for the clinical scenario, clade 17 isolates with CAI alleles either possessing 29 or more repetitions were related to higher 14-day and 30-day mortality, and shorter median survival days.


Asunto(s)
Candida albicans/genética , Candidiasis/microbiología , Repeticiones de Microsatélite , Anciano , Anciano de 80 o más Años , Alelos , Candida albicans/aislamiento & purificación , Candidiasis/epidemiología , Análisis por Conglomerados , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Técnicas de Tipificación Micológica , Filogenia , Factores de Riesgo , Sepsis/microbiología , Taiwán/epidemiología
3.
Exp Cell Res ; 370(2): 312-321, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29964054

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a family of ligand-activated nuclear receptors known to regulate many crucial physiological and pathological conditions. Indeed, altered PPARγ transcriptional activity contributes to metabolic syndromes (obesity and hyperglycemia associated with type 2 diabetes mellitus), stroke and neurodegenerative diseases. Various studies suggest that PPARγ agonists influence neuronal deficits in Alzheimer's Disease (AD) patients and rodent models of AD. Expression of amyloid-beta (Aß), a neuropathological marker associated with the pathogenesis of AD neuronal impairment, is inversely correlated with the activation of PPARγ-dependent neuroprotective responses. Nevertheless, molecular mechanisms by which the effects of PPARγ agonists in AD remain to be clarified. Here, we explore the PPARγ signaling pathways and networks that protect against Aß-induced endoplasmic reticulum (ER) stress (e.g., caspase 4, Bip, CHOP, ASK1 and ER calcium), cell death (e.g., viability and cytochrome c) and mitochondrial deficiency (e.g., maximal respiratory function, COX activity, and mitochondrial membrane potential) events in the human neural stem cells (hNSCs) treated with Aß. Co-treatment with GW9662 (an antagonist of PPARγ) effectively blocked these protective effects by rosiglitazone, providing strong evidence that PPARγ-dependent signaling rescues hNSCs from Aß-mediated toxicity. Together, our data suggest activation of PPARγ pathway might be critical to protecting against AD-related ER stress, ER disequilibrium and mitochondrial deficiency. These findings also improve our understanding of the role of PPARγ in hNSCs, and may aid in the development and implementation of new therapeutic strategies for the treatment of AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , PPAR gamma/efectos de los fármacos , Rosiglitazona/farmacología , Péptidos beta-Amiloides/metabolismo , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , PPAR gamma/metabolismo
4.
Dev Dyn ; 247(12): 1264-1275, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30358936

RESUMEN

BACKGROUND: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear. RESULTS: We examined the function of Pparα in the neural development of zebrafish. Two duplicate paralogs for mammalian PPARA/Ppara, namely pparaa and pparab, are present in the zebrafish genome. Both pparaa and pparab are expressed in the developing central nervous system in zebrafish embryos. Inhibiting the function of Pparα by using either the PPARα/Pparα antagonist GW6471 or pparaa or pparab truncated constructs produced identical phenotypes, which were sufficient to reduce the proliferation of neuronal and glial precursor cells without affecting the formation of neural progenitors. CONCLUSIONS: We demonstrated that both Pparαa and Pparαb proteins are essential regulators of the proliferation of neuronal and glial precursors. This study provides a better understanding of the functions of PPARα/Pparα in neural development and further expands our knowledge of the potential role of PPARα/Pparα in neurological disorders and brain tumors. Developmental Dynamics 247:1264-1275, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/citología , Neuroglía/citología , Neuronas/citología , PPAR alfa/fisiología , Células Madre/citología , Animales , Sistema Nervioso Central/embriología , Neurogénesis , PPAR alfa/deficiencia , Pez Cebra/embriología
5.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 463-474, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27979767

RESUMEN

Neural crest cells are multipotent progenitors that migrate extensively and differentiate into numerous derivatives. The developmental plasticity and migratory ability of neural crest cells render them an attractive model for studying numerous aspects of cell progression. We observed that zebrafish rgs2 was expressed in neural crest cells. Disrupting Rgs2 expression by using a dominant negative rgs2 construct or rgs2 morpholinos reduced GTPase-activating protein activity, induced the formation of neural crest progenitors, increased the proliferation of nonectomesenchymal neural crest cells, and inhibited the formation of ectomesenchymal neural crest derivatives. The transcription of pparda (which encodes Pparδ, a Wnt-activated transcription factor) was upregulated in Rgs2-deficient embryos, and Pparδ inhibition using a selective antagonist in the Rgs2-deficient embryos repaired neural crest defects. Our results clarify the mechanism through which the Rgs2-Pparδ cascade regulates neural crest development; specifically, Pparδ directly binds to the promoter and upregulates the transcription of the neural crest specifier sox10. This study reveals a unique regulatory mechanism, the Rgs2-Pparδ-Sox10 signaling cascade, and defines a key molecular regulator, Rgs2, in neural crest development.


Asunto(s)
Cresta Neural/metabolismo , Neurogénesis/genética , PPAR delta/genética , Proteínas RGS/genética , Factores de Transcripción SOXE/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/crecimiento & desarrollo , PPAR delta/metabolismo , Regiones Promotoras Genéticas , Proteínas RGS/metabolismo , Factores de Transcripción SOXE/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Activación Transcripcional , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Stem Cells ; 35(4): 1003-1014, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27790787

RESUMEN

Neural crest progenitor cells, which give rise to many ectodermal and mesodermal derivatives, must maintain a delicate balance of apoptosis and proliferation for their final tissue contributions. Here we show that zebrafish bmp5 is expressed in neural crest progenitor cells and that it activates the Smad and Erk signaling pathways to regulate cell survival and proliferation, respectively. Loss-of-function analysis showed that Bmp5 was required for cell survival and this response is mediated by the Smad-Msxb signaling cascade. However, the Bmp5-Smad-Msxb signaling pathway had no effect on cell proliferation. In contrast, Bmp5 was sufficient to induce cell proliferation through the Mek-Erk-Id3 signaling cascade, whereas disruption of this signaling cascade had no effect on cell survival. Taken together, our results demonstrate an important regulatory mechanism for bone morphogenic protein-initiated signal transduction underlying the formation of neural crest progenitors. Stem Cells 2017;35:1003-1014.


Asunto(s)
Cresta Neural/citología , Cresta Neural/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Apoptosis , Proteína Morfogenética Ósea 5 , Proliferación Celular , Supervivencia Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Smad/metabolismo , Pez Cebra/embriología
7.
Exp Cell Res ; 359(2): 367-373, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821394

RESUMEN

Advanced glycosylation end products (AGEs) formation is correlated with the pathogenesis of diabetic neuronal damage, but its links with oxidative stress are still not well understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation of AMP-activated protein kinase (AMPK). Once activated, AMPK regulates many pathways central to metabolism and energy balance including, glucose uptake, glycolysis and fatty acid oxidation. AMPK is also present in neurons, but its role remains unclear. Here, we show that AGE exposure decreases cell viability of human neural stem cells (hNSCs), and that the AMPK agonist metformin reverses this effect, via AMPK-dependent downregulation of RAGE levels. Importantly, hNSCs co-treated with metformin were significantly rescued from AGE-induced oxidative stress, as reflected by the normalization in levels of reactive oxygen species. In addition, compared to AGE-treated hNSCs, metformin co-treatment significantly reversed the activity and mRNA transcript level changes of SOD1/2 and Gpx. Furthermore, hNSCs exposed to AGEs had significantly lower mRNA levels among other components of normal cellular oxidative defenses (GSH, Catalase and HO-1), which were all rescued by co-treatment with metformin. This metformin-mediated protective effect on hNSCs for of both oxidative stress and oxidative defense genes by co-treatment with metformin was blocked by the addition of an AMPK antagonist (Compound C). These findings unveil the protective role of AMPK-dependent metformin signaling during AGE mediated oxidative stress in hNSCs, and suggests patients undergoing AGE-mediated neurodegeneration may benefit from the novel therapeutic use of metformin.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Productos Finales de Glicación Avanzada/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Células-Madre Neurales/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
8.
Exp Cell Res ; 352(1): 75-83, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159472

RESUMEN

A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1ß, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated hNSCs. These findings extend our understanding of the central role of AMPK in AGE induced inflammatory responses, which increase the risk of neurodegeneration in diabetic patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Productos Finales de Glicación Avanzada/efectos adversos , Hipoglucemiantes/farmacología , Inflamación/prevención & control , Metformina/farmacología , Células-Madre Neurales/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Inflamación/etiología , Inflamación/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
9.
Dev Genes Evol ; 227(3): 219-230, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28154937

RESUMEN

The forkhead box subclass O (FoxO) family of proteins is a group of highly evolutionary conserved transcription factors that regulate various cellular processes and embryonic development. Dysregulated expressions of FOXO genes have been identified in numerous tumors and genetic disorders. The expression of FOXO/Foxo, particularly FOXO4/Foxo4 and FOXO6/Foxo6, in the developing nervous system has not been fully characterized. Here, we identified zebrafish foxo4, foxo6a, and foxo6b homologs and demonstrated that all three genes were expressed in the developing nervous system. foxo4, foxo6a, and foxo6b displayed ubiquitous expression in the brain and later in distinct brain tissues. In addition, these three genes were expressed in different retinal layers in a time-dependent manner. Furthermore, the mRNA expression of all three genes was significantly downregulated after treatment with a selective PI3-kinase (PI3K) inhibitor, LY294002. Our results suggest that foxo4, foxo6a, and foxo6b play important roles in the developing brain and retina and that the transcriptional levels of these genes are regulated by PI3-kinase signaling.


Asunto(s)
Encéfalo/metabolismo , Factores de Transcripción Forkhead/genética , Retina/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/metabolismo , Regulación de la Expresión Génica , Inhibidores de las Quinasa Fosfoinosítidos-3 , Filogenia , Alineación de Secuencia , Transducción de Señal , Transcripción Genética , Pez Cebra/metabolismo
10.
Exp Cell Res ; 347(2): 322-31, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27554603

RESUMEN

Alzheimer's disease (AD) is the general consequence of dementia and is diagnostic neuropathology by the cumulation of amyloid-beta (Aß) protein aggregates, which are thought to promote mitochondrial dysfunction processes leading to neurodegeneration. AMP-activated protein kinase (AMPK), a critical regulator of energy homeostasis and a major player in lipid and glucose metabolism, is potentially implied in the mitochondrial deficiency of AD. Metformin, one of the widespread used anti- metabolic disease drugs, use its actions in part by stimulation of AMPK. While the mechanisms of AD are well established, the neuronal roles for AMPK in AD are still not well understood. In the present study, human neural stem cells (hNSCs) exposed to Aß had significantly reduced cell viability, which correlated with decreased AMPK, neuroprotective genes (Bcl-2 and CREB) and mitochondria associated genes (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3/9 activity and cytosolic cytochrome c. Co-treatment with metformin distinct abolished the Aß-caused actions in hNSCs. Metformin also significantly rescued hNSCs from Aß-mediated mitochondrial deficiency (lower D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Importantly, co-treatment with metformin significantly restored fragmented mitochondria to almost normal morphology in the hNSCs with Aß. These findings extend our understanding of the central role of AMPK in Aß-related neuronal impairment. Thus, a better understanding of AMPK might assist in both the recognition of its critical effects and the implementation of new therapeutic strategies in the treatment of AD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/farmacología , Metformina/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/ultraestructura , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
11.
Dev Biol ; 397(1): 116-28, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25446033

RESUMEN

The study of molecular regulation in neural development provides information to understand how diverse neural cells are generated. It also helps to establish therapeutic strategies for the treatment of neural degenerative disorders and brain tumors. The Hairy/E(spl) family members are potential targets of Notch signaling, which is fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. In this study, we isolated a zebrafish homolog of Hairy/E(spl), her2, and showed that this gene is expressed in neural progenitor cells and in the developing nervous system. The expression of her2 required Notch activation, as revealed by a Notch-defective mutant and a chemical inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). The endogenous expression of Her2 was altered by both overexpression and morpholino-knockdown approaches, and the results demonstrated that Her2 was both necessary and sufficient to promote the proliferation of neural progenitors by inhibiting the transcription of the cell cycle inhibitors cdkn1a, cdkn1ba, and cdkn1bb. Her2 knockdown caused premature neuronal differentiation, which indicates that Her2 is essential for inhibiting neuronal differentiation. At a later stage of neural development, Her2 could induce glial differentiation. The overexpression of Her2 constructs lacking the bHLH or WRPW domain phenocopied the effect of the morpholino knockdown, demonstrating the essential function of these two domains and further confirming the knockdown specificity. In conclusion, our data reveal that Her2 promotes progenitor proliferation and maintains progenitor characteristics by inhibiting neuronal differentiation. Together, these two mechanisms ensure the proper development of the neural progenitor cell pool.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Receptor ErbB-2/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Dipéptidos/química , Perfilación de la Expresión Génica , Genes Dominantes , Receptor ErbB-2/genética , Transducción de Señal , Factores de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
12.
Biochim Biophys Acta ; 1852(5): 720-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25595658

RESUMEN

Diabetic neuronal damage results from hyperglycemia followed by increased formation of advanced glycosylation end products (AGEs), which leads to neurodegeneration, although the molecular mechanisms are still not well understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation of AMP-activated protein kinase (AMPK). AMPK is a critical evolutionarily conserved enzyme expressed in the liver, skeletal muscle and brain, and promotes cellular energy homeostasis and biogenesis by regulating several metabolic processes. While the mechanisms of AMPK as a metabolic regulator are well established, the neuronal role for AMPK is still unknown. In the present study, human neural stem cells (hNSCs) exposed to AGEs had significantly reduced cell viability, which correlated with decreased AMPK and mitochondria associated gene/protein (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3 and 9 activities. Metformin prevented AGEs induced cytochrome c release from mitochondria into cytosol in the hNSCs. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. Metformin also significantly rescued hNSCs from AGE-mediated mitochondrial deficiency (lower ATP, D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Furthermore, co-treatment of hNSCs with metformin significantly blocked AGE-mediated reductions in the expression levels of several neuroprotective genes (PPARγ, Bcl-2 and CREB). These findings extend our understanding of the molecular mechanisms of both AGE-induced neuronal toxicity, and AMPK-dependent neuroprotection by metformin. This study further suggests that AMPK may be a potential therapeutic target for treating diabetic neurodegeneration.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Metformina/farmacología , Células-Madre Neurales/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Western Blotting , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Exp Cell Res ; 338(2): 183-93, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26362846

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a crucial transcription factor for neuroprotection in several brain diseases. Using a mouse model of Huntington's Disease (HD), we recently showed that PPARγ not only played a major function in preventing HD, but also oral intake of a PPARγ agonist (thiazolidinedione, TZD) significantly reduced the formation of mutant Huntingtin (mHtt) aggregates in the brain (e.g., cortex and striatum). The molecular mechanisms by which PPARγ exerts its HD neuroprotective effects remain unresolved. We investigated whether the PPARγ agonist (rosiglitazone) mediates neuroprotection in the mHtt expressing neuroblastoma cell line (N2A). Here we show that rosiglitazone upregulated the endogenous expression of PPARγ, its downstream target genes (including PGC1α, NRF-1 and Tfam) and mitochondrial function in mHtt expressing N2A cells. Rosiglitazone treatment also significantly reduced mHtt aggregates that included ubiquitin (Ub) and heat shock factor 1 (HSF1), as assessed by a filter-retardation assay, and increased the levels of the functional ubiquitin-proteasome system (UPS), HSF1 and heat shock protein 27/70 (HSP27/70) in N2A cells. Moreover, rosiglitazone treatment normalized endoplasmic reticulum (ER) stress sensors Bip, CHOP and ASK1, and significantly increased N2A cell survival. Taken together, these findings unveil new insights into the mechanisms by which activation of PPARγ signaling protects against the HD-mediated neuronal impairment. Further, our data also support the concept that PPARγ may be a novel therapeutic target for treating HD.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Proteínas del Tejido Nervioso/genética , Fármacos Neuroprotectores/farmacología , Proteínas Nucleares/genética , PPAR gamma/genética , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología , Animales , Encéfalo/efectos de los fármacos , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Proteína Huntingtina , Enfermedad de Huntington/genética , Ratones , Mitocondrias/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Complejo de la Endopetidasa Proteasomal/genética , Rosiglitazona , Factores de Transcripción/genética , Ubiquitina/genética , Regulación hacia Arriba/efectos de los fármacos
14.
J Cell Sci ; 126(Pt 24): 5626-34, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24101720

RESUMEN

Hematopoietic and vascular endothelial cells constitute the circulatory system and are both generated from the ventral mesoderm. However, the molecules and signaling pathways involved in ventral mesoderm formation and specification remain unclear. We found that zebrafish etv5a was expressed in the ventral mesoderm during gastrulation. Knockdown of Etv5a using morpholinos increased the proliferation of ventral mesoderm cells and caused defects in hematopoietic derivatives and in vascular formation. By contrast, the formation of other mesodermal derivatives, such as pronephros, somites and the gut wall, was not affected. Knockdown specificity was further confirmed by overexpression of an etv5a construct lacking its acidic domain. In conclusion, our data reveal that etv5a is essential for the inhibition of ventral mesoderm cell proliferation and for the formation of the hemato-vascular lineage.


Asunto(s)
Proliferación Celular , Mesodermo/citología , Proteínas Proto-Oncogénicas c-ets/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Apoptosis , Diferenciación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Gastrulación , Expresión Génica , Técnicas de Silenciamiento del Gen , Morfolinos/genética , Neovascularización Fisiológica
15.
Hu Li Za Zhi ; 62(6): 105-11, 2015 Dec.
Artículo en Zh | MEDLINE | ID: mdl-26645450

RESUMEN

Health education is the teaching by healthcare professionals of healthcare-related knowledge and skills to students in order that these students learn to help patients self-manage their disease and maintain health. This article introduces a new strategy in health education known as the learning portfolio and presents the theoretical basis and function of the learning portfolio and the current application of this approach in academic and health education. The learning portfolio is a learner-centric approach that collects evidence related to an individual's learning process systematically. This approach helps educators understand learner needs and conditions, while allowing the learner to observe his / her learning process in a manner that promotes self-reflection, continual inspection, and behavioral modification throughout the learning process. The results enhance the motivation of learners and strengthen their care confidence in accomplishing learning tasks.


Asunto(s)
Educación en Salud , Aprendizaje , Humanos , Motivación
16.
Dev Biol ; 375(1): 1-12, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23328254

RESUMEN

Delta/notch-like epidermal growth factor (EGF)-related receptor (DNER) is a single-pass transmembrane protein found to be a novel ligand in the Notch signaling pathway. Its function was previously characterized in the developing cerebellum and inner ear hair cells. In this study, we isolated a zebrafish homolog of DNER and showed that this gene is expressed in the developing nervous system. Overexpression of dner or the intracellular domain of dner was sufficient to inhibit the proliferation of neural progenitors and induce neuronal and glial differentiation. In contrast, the knockdown of endogenous Dner expression using antisense morpholino oligonucleotides increased the proliferation of neural progenitors and maintained neural cells in a progenitor status through inhibition of neuronal and glial differentiation. Through analysis of the antagonistic effect on the Delta ligand and the role of the potential downstream mediator Deltex1, we showed that Dner acts in Notch-dependent and Notch-independent manner. This is the first study to demonstrate a role for Dner in neural progenitors and neuronal differentiation and provides new insights into mediation of neuronal development and differentiation by the Notch signaling pathway.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Neuroglía/citología , Neuronas/citología , Receptores de Superficie Celular/metabolismo , Receptores Notch/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Morfolinos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Oligodesoxirribonucleótidos Antisentido , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Alineación de Secuencia , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
17.
J Biol Chem ; 288(39): 27927-39, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23902762

RESUMEN

In this study, we used zebrafish as an animal model to elucidate the developmental function of cdk10 in vertebrates. In situ hybridization analyses demonstrated that cdk10 is expressed throughout development with a relative enrichment in the brain in the late stages. Similar to its mammalian ortholog, cdk10 can interact with the transcription factor ETS2 and exhibit kinase activity by phosphorylating histone H1. Morpholino-based loss of cdk10 expression caused apoptosis in sox2-positive cells and decreased the expression of subsequent neuronal markers. Acetylated tubulin staining revealed a significant reduction in the number of Rohon-Beard sensory neurons in cdk10 morphants. This result is similar to that demonstrated by decreased islet2 expression in the dorsal regions. Moreover, cdk10 morphants exhibited a marked loss of huC-positive neurons in the telencephalon and throughout the spinal cord axis. The population of retinal ganglion cells was also diminished in cdk10 morphants. These phenotypes were rescued by co-injection of cdk10 mRNA. Interestingly, the knockdown of cdk10 significantly elevated raf1a mRNA expression. Meanwhile, an MEK inhibitor (U0126) recovered sox2 and ngn1 transcript levels in cdk10 morphants. Our findings provide the first functional characterization of cdk10 in vertebrate development and reveal its critical function in neurogenesis by modulation of raf1a expression.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Regulación Enzimológica de la Expresión Génica , Neuronas/citología , Proteínas Proto-Oncogénicas c-raf/metabolismo , Células Madre/citología , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Neurogénesis , Neuronas/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Células Ganglionares de la Retina/citología , Homología de Secuencia de Aminoácido , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
18.
Cell Mol Life Sci ; 70(5): 935-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23052218

RESUMEN

The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.


Asunto(s)
Axones/metabolismo , Axones/patología , Neuronas/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas RGS/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Neurogénesis , Neuronas/metabolismo , Neuronas/patología , Filogenia , Proteínas RGS/química , Proteínas RGS/genética , Alineación de Secuencia , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética
19.
Stem Cells Dev ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001828

RESUMEN

Traumatic injury to the spinal cord can lead to significant, permanent disability. Mammalian spinal cords are not capable of regeneration; in contrast, adult zebrafish are capable of such regeneration, fully recovering motor function. Understanding the mechanisms underlying zebrafish neuroregeneration may provide useful information regarding endogenous regenerative potential and aid in the development of therapeutic strategies in humans. DTXs regulate a variety of cellular processes. However, their role in neural regeneration has not been described. We found that zebrafish dtx2, encoding Deltex E3 ubiquitin ligase 2, is expressed in ependymo-radial glial cells in the adult spinal cord. After spinal cord injury, the heterozygous dtx2 mutant fish motor function recovered quicker than that of the wild-type controls. The mutant fish displayed increased ependymo-radial glial cell proliferation and augmented motor neuron formation. Moreover, her gene expression, downstream of Notch signaling, increased in Dtx2 mutants. Notch signaling inactivation by dominant-negative Rbpj abolished the increased ependymo-radial glia proliferation caused by Dtx2 deficiency. These results indicate that ependymo-radial glial proliferation is induced by Dtx2 deficiency, by activating Notch-Rbpj signaling to improve spinal cord regeneration and motor function recovery.

20.
J Neurosci Res ; 91(1): 51-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23086717

RESUMEN

Growth arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in mammals. However, the structure and function of Gas7 homologs have not been studied in nonmammalian vertebrates used as models. In this report, we identify a Gas7 gene in zebrafish that we termed zfGas7. The transcript of this gene was produced by canonical splicing, and its protein product contained a Fes/CIP4 homology and a coiled-coil domain. In early zebrafish embryos, RT-PCR analyses revealed that zfGas7 was initially expressed at 5.3 hr postfertilization (hpf), followed by an increase of expression at 10 hpf and further accumulation during somitogenesis at 48 hpf. Spatiotemporal analyses further showed that Gas7 mRNA was detected in the brain, somite, and posterior presomitic mesoderm regions during somitogenesis. At 36 hpf, zfGas7 mRNA was detected in the brain and somite but was later found only in neuronal clusters of the brain at 52 hpf. Gas7 knockdown with morpholino antisense oligonucleotides (Gas7MO) reduced the number of HuC-positive neurons in the trigeminal and statoacoustic ganglions and produced deformed phenotypes, such as flattening of the top of the head. Notably, the neuron reduction and deformed phenotypes observed in Gas7MO embryos were partially rescued by ectopic expression of Gas7. Because altered somitogenesis and pigmentation were also found in the morphants, the neuronal phenotypes observed likely are due to a general developmental delay of embryogenesis. These results indicate that Gas7 is expressed in neuronal cells but is not specifically required for neuronal development in vertebrates.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Sistema Nervioso/embriología , Neurogénesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Secuencia de Bases , Western Blotting , Embrión no Mamífero , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA