Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257674

RESUMEN

During the COVID-19 pandemic, the number of cases continued to rise. As a result, there was a growing demand for alternative control methods to traditional buttons or touch screens. However, most current gesture recognition technologies rely on machine vision methods. However, this method can lead to suboptimal recognition results, especially in situations where the camera is operating in low-light conditions or encounters complex backgrounds. This study introduces an innovative gesture recognition system for large movements that uses a combination of millimeter wave radar and a thermal imager, where the multi-color conversion algorithm is used to improve palm recognition on the thermal imager together with deep learning approaches to improve its accuracy. While the user performs gestures, the mmWave radar captures point cloud information, which is then analyzed through neural network model inference. It also integrates thermal imaging and palm recognition to effectively track and monitor hand movements on the screen. The results suggest that this combined method significantly improves accuracy, reaching a rate of over 80%.


Asunto(s)
COVID-19 , Gestos , Humanos , Pandemias , Algoritmos , COVID-19/diagnóstico , Mano/diagnóstico por imagen
2.
PLoS Pathog ; 13(7): e1006444, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28683091

RESUMEN

Group A Streptococcus (GAS) is deleterious pathogenic bacteria whose interaction with blood vessels leads to life-threatening bacteremia. Although xenophagy, a special form of autophagy, eliminates invading GAS in epithelial cells, we found that GAS could survive and multiply in endothelial cells. Endothelial cells were competent in starvation-induced autophagy, but failed to form double-membrane structures surrounding GAS, an essential step in xenophagy. This deficiency stemmed from reduced recruitment of ubiquitin and several core autophagy proteins in endothelial cells, as demonstrated by the fact that it could be rescued by exogenous coating of GAS with ubiquitin. The defect was associated with reduced NO-mediated ubiquitin signaling. Therefore, we propose that the lack of efficient clearance of GAS in endothelial cells is caused by their intrinsic inability to target GAS with ubiquitin to promote autophagosome biogenesis for xenophagy.


Asunto(s)
Autofagia , Células Endoteliales/citología , Infecciones Estreptocócicas/fisiopatología , Streptococcus pyogenes/fisiología , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Humanos , Fagosomas/metabolismo , Fagosomas/microbiología , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Ubiquitina/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-29581121

RESUMEN

Group A Streptococcus (GAS) is an important human pathogen that causes a wide spectrum of diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), an antitussive drug, has been demonstrated to efficiently reduce inflammatory responses, thereby contributing to an increased survival rate of GAS-infected mice. However, the anti-inflammatory mechanisms underlying DM treatment in GAS infection remain unclear. DM is known to exert neuroprotective effects through an NADPH oxidase-dependent regulated process. In the present study, membrane translocation of NADPH oxidase subunit p47phox and subsequent reactive oxygen species (ROS) generation induced by GAS infection were significantly inhibited via DM treatment in RAW264.7 murine macrophage cells. Further determination of proinflammatory mediators revealed that DM effectively suppressed inducible nitric oxide synthase (iNOS) expression and NO, tumor necrosis factor alpha, and interleukin-6 generation in GAS-infected RAW264.7 cells as well as in air-pouch-infiltrating cells from GAS/DM-treated mice. GAS infection caused AKT dephosphorylation, glycogen synthase kinase-3ß (GSK-3ß) activation, and subsequent NF-κB nuclear translocation, which were also markedly inhibited by treatment with DM and an NADPH oxidase inhibitor, diphenylene iodonium. These results suggest that DM attenuates GAS infection-induced overactive inflammation by inhibiting NADPH oxidase-mediated ROS production that leads to downregulation of the GSK-3ß/NF-κB/NO signaling pathway.


Asunto(s)
Dextrometorfano/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/enzimología , Animales , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Compuestos Onio/farmacología , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/genética , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Infecciones Estreptocócicas/metabolismo , Células THP-1
4.
Ann Neurol ; 77(3): 504-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25558977

RESUMEN

OBJECTIVE: Stroke is a leading cause of mortality and disability. The peptidyl-prolyl cis/trans isomerase Pin1 regulates factors involved in cell growth. Recent evidence has shown that Pin1 plays a major role in apoptosis. However, the role of Pin1 in ischemic stroke remains to be investigated. METHODS: We used Pin1 overexpression and knockdown to manipulate Pin1 expression and explore the effects of Pin1 in cell death on ischemic stress in vitro and in a mouse stroke model. We also used Pin 1 inhibitor, γ-secretase inhibitor, Notch1 intracellular domain (NICD1)-deleted mutant cells, and Pin1 mutant cells to investigate the underlying mechanisms of Pin1-NICD1-mediated cell death. RESULTS: Our findings indicate that Pin1 facilitates NICD1 stability and its proapoptotic function following ischemic stroke. Thus, overexpression of Pin1 increased NICD1 levels and enhanced its potentiation of neuronal death in simulated ischemia. By contrast, depletion or knockout of Pin1 reduced the NICD1 level, which in turn desensitized neurons to ischemic conditions. Pin1 interacted with NICD1 and increased its stability by inhibiting FBW7-induced polyubiquitination. We also demonstrate that Pin1 and NICD1 levels increase following stroke. Pin1 heterozygous (+/-) and knockout (-/-) mice, and also wild-type mice treated with an inhibitor of Pin1, each showed reduced brain damage and improved functional outcomes in a model of focal ischemic stroke. INTERPRETATION: These results suggest that Pin1 contributes to the pathogenesis of ischemic stroke by promoting Notch signaling, and that inhibition of Pin1 is a novel approach for treating ischemic stroke.


Asunto(s)
Apoptosis/fisiología , Isquemia/metabolismo , Neuronas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Receptor Notch1/metabolismo , Accidente Cerebrovascular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Humanos , Isquemia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/genética , Estabilidad Proteica , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/fisiología , Accidente Cerebrovascular/tratamiento farmacológico
5.
Mediators Inflamm ; 2015: 274025, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26199460

RESUMEN

Infection with dengue virus (DENV) causes an increase in proinflammatory responses, such as nitric oxide (NO) generation and TNF-α expression; however, the molecular mechanism underlying this inflammatory activation remains undefined, although the activation of the transcription factor NF-κB is generally involved. In addition to TNF-α production in DENV-infected murine macrophage RAW264.7 cells, inducible NO synthase was transcriptionally and posttranslationally elevated and accompanied by NO generation. NF-κB is known to be activated by DENV infection. Pharmacologically inhibiting NF-κB activation abolishes iNOS/NO biosynthesis and TNF-α production. With inhibition, the potential role of NF-κB in oxidative signaling regulation was prevented during DENV infection. Heat-inactivated DENV failed to cause the identified inflammatory responses. Pharmacological inhibition of TLR3 partly decreased NF-κB activation; however, it effectively abolished inducible iNOS/NO biosynthesis but did not inhibit TNF-α production. In contrast to TLR3, viral protein NS2B3 also independently contributed to NF-κB activation to regulate TNF-α production. These results show the distinct pathways for NF-κB activation caused by DENV infection individually for the regulation of iNOS/NO and TNF-α expression.


Asunto(s)
Virus del Dengue/patogenicidad , Macrófagos/metabolismo , Macrófagos/virología , FN-kappa B/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ácidos Cafeicos/farmacología , Línea Celular , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Transducción de Señal/efectos de los fármacos
6.
Neurobiol Dis ; 62: 286-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24141018

RESUMEN

Recent findings suggest that Notch-1 signaling contributes to neuronal death in ischemic stroke, but the underlying mechanisms are unknown. Hypoxia inducible factor-1α (HIF-1α), a global regulator of cellular responses to hypoxia, can interact with Notch and modulate its signaling during hypoxic stress. Here we show that Notch signaling interacts with the HIF-1α pathway in the process of ischemic neuronal death. We found that a chemical inhibitor of the Notch-activating enzyme, γ-secretase, and a HIF-1α inhibitor, protect cultured cortical neurons against ischemic stress, and combined inhibition of Notch-1 and HIF-1α further decreased neuronal death. HIF-1α and Notch intracellular domain (NICD) are co-expressed in the neuronal nucleus, and co-immunoprecipitated in cultured neurons and in brain tissue from mice subjected to focal ischemic stroke. Overexpression of NICD and HIF-1α in cultured human neural cells enhanced cell death under ischemia-like conditions, and a HIF-1α inhibitor rescued the cells. RNA interference-mediated depletion of endogenous NICD and HIF-1α also decreased cell death under ischemia-like conditions. Finally, mice treated with inhibitors of γ-secretase and HIF-1α exhibited improved outcome after focal ischemic stroke, with combined treatment being superior to individual treatments. Additional findings suggest that the NICD and HIF-1α collaborate to engage pro-inflammatory and apoptotic signaling pathways in stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Receptor Notch1/metabolismo , Accidente Cerebrovascular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Humanos , Infarto de la Arteria Cerebral Anterior/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo
7.
Microbiol Mol Biol Rev ; 88(1): e0005222, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38451081

RESUMEN

SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Humanos , Infecciones Estreptocócicas/patología , Inmunidad Innata , Factores de Virulencia , Fagocitosis
8.
Rheumatol Int ; 33(8): 2079-83, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23408151

RESUMEN

The aim of the study is to explore additional susceptibility factors for systemic lupus erythematosus (SLE) in Chinese Hans. Based on our previous GWAS of SLE, we performed a multistage replication study involving 3,152 cases and 7,050 controls from China to identify additional susceptibility loci for SLE by using the Sequenom MassArray system. All Chinese Han samples used in this study were obtained from doctors through collaboration with multiple hospitals in two geographic regions (central and southern China). Single-marker association analyses were performed using logistic regression with gender as a covariate in each case-control cohort. The joint analysis of all combined samples was performed using logistic regression with gender and sample cohorts as covariates. The significant association evidence for rs906868 (OR = 1.14, 95% CI 1.08-1.20, P combined = 7.71 × 10(-10)) and rs7579944 (OR = 1.13, 95% CI 1.07-1.19, P combined = 5.55 × 10(-9)) was observed, which located at 2p23.1. In this region, limb bud and heart development homolog (LBH) was the only gene indicated, suggesting LBH might be a susceptibility gene for SLE, although its function was still unknown. The results indicated that the SNP rs7579944, rs906868 at 2p23.1 showed significant association with SLE. The genes LBH which located in this loci might be the predisposing genes of SLE.


Asunto(s)
Pueblo Asiatico/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple , Adulto , China , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad
9.
J Neurochem ; 122(2): 321-32, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22494053

RESUMEN

Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid ßpeptide (Aß)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aß-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aß. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aß-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Isquemia Encefálica/prevención & control , Muerte Celular/efectos de los fármacos , Inmunoglobulinas Intravenosas/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/prevención & control , Péptidos beta-Amiloides/farmacología , Animales , Western Blotting , Isquemia Encefálica/patología , Mapeo Encefálico , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glucosa/deficiencia , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Infarto de la Arteria Cerebral Media/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Accidente Cerebrovascular/patología , Resultado del Tratamiento , Regulación hacia Arriba
10.
N Engl J Med ; 361(27): 2609-18, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20018961

RESUMEN

BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Lepra Multibacilar/genética , Lepra Paucibacilar/genética , Polimorfismo de Nucleótido Simple , Anciano , Estudios de Casos y Controles , Femenino , Redes Reguladoras de Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium leprae , Proteína Adaptadora de Señalización NOD2/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal
11.
FASEB J ; 25(10): 3661-73, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21705667

RESUMEN

Inactivation of glycogen synthase kinase (GSK)-3 has been implicated in cancer progression. Previously, we showed an abundance of inactive GSK-3 in the human chronic myeloid leukemia (CML) cell line. CML is a hematopoietic malignancy caused by an oncogenic Bcr-Abl tyrosine kinase. In Bcr-Abl signaling, the role of GSK-3 is not well defined. Here, we report that enforced expression of constitutively active GSK-3 reduced proliferation and increased Bcr-Abl inhibition-induced apoptosis by nearly 1-fold. Bcr-Abl inhibition activated GSK-3 and GSK-3-dependent apoptosis. Inactivation of GSK-3 by Bcr-Abl activity is, therefore, confirmed. To reactivate GSK-3, we used glucosylceramide synthase (GCS) inhibitor PDMP to accumulate endogenous ceramide, a tumor-suppressor sphingolipid and a potent GSK-3 activator. We found that either PDMP or silence of GCS increased Bcr-Abl inhibition-induced GSK-3 activation and apoptosis. Furthermore, PDMP sensitized the most clinical problematic drug-resistant CML T315I mutant to Bcr-Abl inhibitor GNF-2-, imatinib-, or nilotinib-induced apoptosis by >5-fold. Combining PDMP and GNF-2 eliminated transplanted-CML-T315I-mutants in vivo and dose dependently sensitized primary cells from CML T315I patients to GNF-2-induced proliferation inhibition and apoptosis. The synergistic efficacy was Bcr-Abl restricted and correlated to increased intracellular ceramide levels and acted through GSK-3-mediated apoptosis. This study suggests a feasible novel anti-CML strategy by accumulating endogenous ceramide to reactivate GSK-3 and abrogate drug resistance.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Genes abl , Glucosiltransferasas/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Morfolinas/farmacología , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Ceramidas/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Femenino , Genes abl/efectos de los fármacos , Genes abl/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Inmunoglobulina G , Melfalán , Ratones , Ratones SCID , Mutación , Neoplasias Experimentales , Pirimidinas , Trasplante Heterólogo
12.
Mol Pharmacol ; 80(1): 23-31, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21450930

RESUMEN

Notch-1 (Notch) is a cell surface receptor that regulates cell-fate decisions in the developing nervous system, and it may also have roles in synaptic plasticity in the adult brain. Binding of its ligands results in the proteolytic cleavage of Notch by the γ-secretase enzyme complex, thereby causing the release of a Notch intracellular domain (NICD) that translocates to the nucleus, in which it regulates transcription. Here we show that activation of Notch modulates ischemic neuronal cell death in vitro and in vivo. Specifically, our findings from the use of Notch-1 siRNA or the overexpression of NICD indicate that Notch activation contributes to cell death. Using modified NICD, we demonstrate an apoptosis-inducing function of NICD in both the nucleus and the cytosol. NICD transfection-induced cell death was reduced by blockade of calcium signaling, caspase activation, and Janus kinase signaling. Inhibition of the Notch-activating enzyme, γ-secretase, protected against ischemic neuronal cell death by targeting an apoptotic protease, cleaved caspase-3, nuclear factor-κB (NF-κB), and the pro-death BH3-only protein, Bcl-2-interacting mediator of cell death (Bim). Treatment of mice with a γ-secretase inhibitor, compound E, reduced infarct size and improved functional outcome in a model of focal ischemic stroke. Furthermore, γ-secretase inhibition reduced NICD, p-p65, and Bim levels in vivo. These findings suggest that Notch signaling endangers neurons after ischemic stroke by modulating the NF-κB, pro-death protein Bim, and caspase pathways.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Isquemia Encefálica/patología , Muerte Celular/fisiología , FN-kappa B/metabolismo , Neuronas/citología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Accidente Cerebrovascular/patología , Animales , Isquemia Encefálica/enzimología , Isquemia Encefálica/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/metabolismo
13.
J Biol Chem ; 285(37): 28715-22, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20592027

RESUMEN

Autophagy is regulated for IFN-gamma-mediated antimicrobial efficacy; however, its molecular effects for IFN-gamma signaling are largely unknown. Here, we show that autophagy facilitates IFN-gamma-activated Jak2-STAT1. IFN-gamma induces autophagy in wild-type but not in autophagy protein 5 (Atg5(-/-))-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-gamma induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5(-/-) or Atg7(-/-) MEFs are, independent of changes in IFN-gamma receptor expression, resistant to IFN-gamma-activated Jak2-STAT1, which suggests that autophagy is important for IFN-gamma signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-gamma-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-gamma-induced activation of STAT1 in Atg5(-/-) MEFs. Our study provides evidence that there is a link between autophagy and both IFN-gamma signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation.


Asunto(s)
Autofagia/fisiología , Fibroblastos/metabolismo , Interferón gamma/metabolismo , Janus Quinasa 2/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factor de Transcripción STAT1/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Técnicas de Silenciamiento del Gen , Inflamación/genética , Inflamación/metabolismo , Interferón gamma/genética , Janus Quinasa 2/genética , Lentivirus , Ratones , Proteínas Asociadas a Microtúbulos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
Biochem Biophys Res Commun ; 412(2): 334-40, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21821001

RESUMEN

Galectin-3 is regulated for cancer cell survival and apoptosis depending upon the cell type and stimulus. We investigated a glycogen synthase kinase (GSK)-3ß/galectin-3-regulated mechanism used by leukemia cells to escape from apoptotic stimuli. Galectin-3 expression was time- and transcription-dependently deregulated in K562 chronic myeloid leukemia cells stimulated for apoptosis by cisplatin (a platinum-based chemotherapy drug), sphingolipid ceramide analog C(2)-ceramide, and LY294002 (a phosphatidylinositol 3-kinase inhibitor). Notably, galectin-3 was upregulated in survival cells. Forced galectin-3 expression caused resistance to apoptosis, whereas knockdown galectin-3 expression increased susceptibility to apoptosis. Sub-cellular distribution of inducible galectin-3 was mitochondria-specific. Apoptotic stimuli decreased pro-survival Bcl-2 family protein expression (especially Mcl-1), whereas galectin-3 overexpression reversed but it was enhanced by a galectin-3 expression knockdown. Under apoptotic stimulation, GSK-3ß was activated after Akt was inactivated and GSK-3ß was inhibited-either pharmacologically or using short hairpin RNA to abolish galectin-3, increase apoptosis, and inhibit colony formation-which suggests a pro-survival role for GSK-3ß. We found that GSK-3ß upregulated galectin-3 and stabilized anti-apoptotic Bcl-2 family proteins, which is important for the escape of leukemia cells from apoptotic stimuli.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Galectina 3/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cromonas/farmacología , Galectina 3/genética , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Mitocondrias/metabolismo , Morfolinas/farmacología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tiadiazoles/farmacología , Transcripción Genética , Proteína bcl-X/metabolismo
15.
Rheumatology (Oxford) ; 50(4): 682-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21134959

RESUMEN

OBJECTIVE: We have performed a large-scale replication study based on our previous genome-wide association study (GWAS) of SLE in the Chinese Han population to further explore additional genetic variants affecting susceptibility to SLE. METHODS: Thirty-eight single nucleotide polymorphisms from our GWAS were genotyped in two additional Chinese Han cohorts (total 3152 cases and 7050 controls) using the Sequenom Massarray system. Association analyses were performed using logistic regression with gender or sample cohorts as a covariate. RESULTS: Association evidence for rs16972959 (PRKCB at 16p11.2) and rs12676482 (8p11.21) with SLE was replicated independently in both replication cohorts (P < 0.05), showing high significance for SLE in combined all 4199 cases and 8255 controls of Chinese Han [rs16972959: odds ratio (OR) = 0.81; 95% CI 0.76, 0.87; P(combined) = 1.35 × 10(-9); rs12676482: OR = 1.26; 95% CI 1.15, 1.38; P(combined) = 6.68 × 10(-7)). PRKCB is related to the established SLE immune-related pathway (NF-κB) and 8p11.21 contains important candidate genes such as IKBKB and DKK4. IKBKB is a critical component of NF-κB and DKK4 is an inhibitor of canonical Wnt signalling pathway. Interestingly, PRKCB is required for recruiting IKBKB into lipid rafts, up-regulating NF-κB-dependent survival signal. CONCLUSIONS: Our findings provided novel insights into the genetic architecture of SLE and emphasized the contribution of multiple variants of modest effect. Further study focused on PRKCB, 8p11.21, should advance our understanding on the pathogenesis of SLE.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Par 8/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple/genética , Proteína Quinasa C/genética , Adulto , Pueblo Asiatico/etnología , Estudios de Casos y Controles , China , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad/etnología , Genotipo , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Lupus Eritematoso Sistémico/etnología , Masculino , Persona de Mediana Edad , FN-kappa B/fisiología , Proteína Quinasa C beta , Transducción de Señal/genética , Proteínas Wnt/fisiología
16.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185526

RESUMEN

Legionella pneumophila causes a severe pneumonia known as Legionnaires' disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1'), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host-pathogen interactions.


Asunto(s)
Bacterias/enzimología , Enzimas Desubicuitinizantes/metabolismo , Línea Celular , Enzimas Desubicuitinizantes/genética , Escherichia coli , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Legionella , Legionelosis , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ubiquitinación
17.
Front Microbiol ; 11: 117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117141

RESUMEN

Group A streptococcus (GAS) is a versatile pathogen that causes a wide spectrum of diseases in humans. Invading host cells is a known strategy for GAS to avoid antibiotic killing and immune recognition. However, the underlying mechanisms of GAS resistance to intracellular killing need to be explored. Endothelial HMEC-1 cells were infected with GAS, methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella Typhimurium under nicotinamide (NAM)-supplemented conditions. The intracellular NAD+ level and cell viability were respectively measured by NAD+ quantification kit and protease-based cytotoxicity assay. Moreover, the intracellular bacteria were analyzed by colony-forming assay, transmission electron microscopy, and confocal microscopy. We found that supplementation with exogenous nicotinamide during infection significantly inhibited the growth of intracellular GAS in endothelial cells. Moreover, the NAD+ content and NAD+/NADH ratio of GAS-infected endothelial cells were dramatically increased, whereas the cell cytotoxicity was decreased by exogenous nicotinamide treatment. After knockdown of the autophagy-related ATG9A, the intracellular bacterial load was increased in nicotinamide-treated endothelial cells. The results of Western blot and transmission electron microscopy also revealed that cells treated with nicotinamide can increase autophagy-associated LC3 conversion and double-membrane formation during GAS infection. Confocal microscopy images further showed that more GAS-containing vacuoles were colocalized with lysosome under nicotinamide-supplemented conditions than without nicotinamide treatment. In contrast to GAS, supplementation with exogenous nicotinamide did not effectively inhibit the growth of MRSA or S. Typhimurium in endothelial cells. These results indicate that intracellular NAD+ homeostasis is crucial for controlling intracellular GAS infection in endothelial cells. In addition, nicotinamide may be a potential new therapeutic agent to overcome persistent infections of GAS.

18.
Infect Immun ; 77(9): 4002-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19596777

RESUMEN

A proinflammatory role for glycogen synthase kinase 3beta (GSK-3beta) has been demonstrated. Here, we addressed its roles on heat-inactivated Staphylococcus aureus-induced microglial inflammation. Heat-inactivated S. aureus induced tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) production, at least in part, via a Toll-like receptor 2-regulated pathway. Neutralization of TNF-alpha largely blocked heat-inactivated S. aureus-induced NO. Heat-inactivated S. aureus activated GSK-3beta, and inhibiting GSK-3beta reduced TNF-alpha production as well as inducible NO synthase (iNOS)/NO biosynthesis. While activation of NF-kappaB was essential for heat-inactivated S. aureus-induced TNF-alpha and NO, inhibiting GSK-3beta blocked heat-inactivated S. aureus-induced NF-kappaB p65 nuclear translocation. Additionally, inhibiting GSK-3beta enhanced heat-inactivated S. aureus-induced interleukin-10 (IL-10) production (IL-10 is an anti-inflammatory cytokine which inhibits TNF-alpha production). Neutralization of IL-10 reduced TNF-alpha downregulation caused by GSK-3beta inhibition. These results suggest that GSK-3beta regulates heat-inactivated S. aureus-induced TNF-alpha and NO production in microglia mainly by activating NF-kappaB and probably by inhibiting IL-10.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Inflamación/etiología , Microglía/inmunología , Transducción de Señal/fisiología , Staphylococcus aureus/patogenicidad , Receptor Toll-Like 2/fisiología , Animales , Células Cultivadas , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Interleucina-10/fisiología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesis
19.
mBio ; 10(5)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575768

RESUMEN

Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for ß1 integrin-mediated LAP induction. After downregulation of ß1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/ß1 integrin/NOX2/ROS pathway.IMPORTANCE Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that ß1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells.


Asunto(s)
Células Endoteliales/microbiología , Macroautofagia , Streptococcus pyogenes/fisiología , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Humanos , Integrina beta1/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , NADPH Oxidasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vacuolas/metabolismo
20.
J Cell Biochem ; 105(3): 746-55, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18655171

RESUMEN

Interferon-gamma (IFN-gamma) plays a crucial role in innate immunity and inflammation. It causes the synergistic effect on endotoxin lipopolysaccharide (LPS)-stimulated inducible nitric oxide synthase (iNOS)/NO biosynthesis; however, the mechanism remains unclear. In the present study, we investigated the effects of glycogen synthase kinase-3 (GSK-3)-mediated inhibition of anti-inflammatory interleukin-10 (IL-10). We found, in LPS-stimulated macrophages, that IFN-gamma increased iNOS expression and NO production in a time-dependent manner. In addition, ELISA analysis showed the upregulation of tumor necrosis factor-alpha and regulated on activation, normal T expressed and secreted, and the downregulation of IL-10. RT-PCR further showed changes in the IL-10 mRNA level as well. Treating cells with recombinant IL-10 showed a decrease in IFN-gamma/LPS-induced iNOS/NO biosynthesis, whereas anti-IL-10 neutralizing antibodies enhanced this effect, suggesting that IL-10 acts in an anti-inflammatory role. GSK-3-inhibitor treatment blocked IFN-gamma/LPS-induced iNOS/NO biosynthesis but upregulated IL-10 production. Inhibiting GSK-3 using short-interference RNA showed similar results. Additionally, treating cells with anti-IL-10 neutralizing antibodies blocked these effects. We further showed that inhibiting GSK-3 increased phosphorylation of transcription factor cyclic AMP response element binding protein. Inhibiting protein tyrosine kinase Pyk2, an upstream regulator of GSK-3beta, caused inhibition on IFN-gamma/LPS-induced GSK-3beta phosphorylation at tyrosine 216 and iNOS/NO biosynthesis. Taken together, these findings reveal the involvement of GSK-3-inhibited IL-10 on the induction of iNOS/NO biosynthesis by IFN-gamma synergized with LPS.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Interferón gamma/farmacología , Interleucina-10/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Óxido Nítrico/biosíntesis , Animales , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA