Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270037

RESUMEN

WRKY transcription factors (TFs), which make up one of the largest families of TFs in the plant kingdom, are key players in modulating gene expression relating to embryogenesis, senescence, pathogen resistance, and abiotic stress responses. However, the phylogeny and grouping of WRKY TFs and how their binding ability is affected by the flanking regions of W-box sequences remain unclear. In this study, we reconstructed the phylogeny of WRKY across the plant kingdom and characterized the DNA-binding profile of Arabidopsis thaliana WRKY (WRKY54) based on its W-box recognition sequence. We found that WRKY TFs could be separated into five clades, and that the functional zinc-finger motif at the C-terminal of WRKY appeared after several nucleotide substitutions had occurred at the 3'-end of the zinc-finger region in chlorophytes. In addition, we found that W-box flanking regions affect the binding ability of WRKY54 based on the results of a fluorescence-based electrophoretic mobility shift assay (fEMSA) and quartz crystal microbalance (QCM) analysis. The great abundance of WRKY TFs in plants implicates their involvement in diverse molecular regulatory networks, and the flanking regions of W-box sequences may contribute to their molecular recognition mechanism. This phylogeny and our findings on the molecular recognition mechanism of WRKY TFs should be helpful for further research in this area.


Asunto(s)
Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Zinc/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499259

RESUMEN

The evolutionary histories of ornamental plants have been receiving only limited attention. We examined the origin and divergence processes of an East Asian endemic ornamental plant, Conandron ramondioides. C. ramondioides is an understory herb occurring in primary forests, which has been grouped into two varieties. We reconstructed the evolutionary and population demography history of C. ramondioides to infer its divergence process. Nuclear and chloroplast DNA sequences were obtained from 21 Conandron populations on both sides of the East China Sea (ECS) to explore its genetic diversity, structure, and population differentiation. Interestingly, the reconstructed phylogeny indicated that the populations should be classified into three clades corresponding to geographical regions: the Japan (Honshu+Shikoku) clade, the Taiwan-Iriomote clade, and the Southeast China clade. Lineage divergence between the Japan clade and the Taiwan-Iriomote and Southeast China clades occured 1.14 MYA (95% HPD: 0.82-3.86), followed by divergence between the Taiwan-Iriomote and Southeast China clades approximately 0.75 MYA (95% HPD: 0.45-1.3). Furthermore, corolla traits (floral lobe length to tube length ratios) correlated with geographical distributions. Moreover, restricted gene flow was detected among clades. Lastly, the lack of potential dispersal routes across an exposed ECS seafloor during the last glacial maximum suggests that migration among the Conandron clades was unlikely. In summary, the extant Conandron exhibits a disjunct distribution pattern as a result of vicariance rather than long-distance dispersal. We propose that allopatric divergence has occurred in C. ramondioides since the Pleistocene. Our findings highlight the critical influence of species' biological characteristics on shaping lineage diversification of East Asian relic herb species during climate oscillations since the Quaternary.


Asunto(s)
Evolución Molecular , Evolución Biológica , ADN de Cloroplastos/genética , Filogenia , Filogeografía , Plantas
3.
Plant Physiol ; 184(3): 1585-1600, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32878973

RESUMEN

Mammalian histone deacetylases (HDACs) undergo phosphorylation to regulate their localization, activity, and function. However, little is known about the regulation of plant HDAC function and activity by phosphorylation. Here, we report the crystal structure of the Reduced Potassium Dependency3/Histone Deacetylase1 (RPD3/HDA1) type class II histone deacetylase HDA15 in Arabidopsis (Arabidopsis thaliana). The histone deacetylase domain of HDA15 (HDA15HD) assembles as tetrameric forms with each monomer composed of 12 α-helices and 9 ß-sheets. The L1 loop and ß2 sheet of HDA15HD are the essential interfaces for the tetramer formation. The N-terminal zinc finger domain enhances HDA15HD dimerization and increases its enzymatic activity. Furthermore, HDA15 can also be phosphorylated at Ser-448 and Ser-452 in etiolated seedlings. The HDA15 phosphorylation status determines its subnuclear localization and oligomerization. Phosphomimetics of HDA15 partially disrupt its oligomerization and cause loss of enzymatic activity and translocation from the nucleolus into nucleoplasm. Together, these data indicate that phosphorylation plays a critical role in regulating the structure and function of HDA15.


Asunto(s)
Arabidopsis/química , Arabidopsis/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Estructura Molecular , Fosforilación
4.
Biotechnol Bioeng ; 118(9): 3409-3419, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33742693

RESUMEN

Catalytic efficiency and thermostability are the two most important characteristics of enzymes. However, it is always tough to improve both catalytic efficiency and thermostability of enzymes simultaneously. In the present study, a computational strategy with double-screening steps was proposed to simultaneously improve both catalysis efficiency and thermostability of enzymes; and a fungal α-l-rhamnosidase was used to validate the strategy. As the result, by molecular docking and sequence alignment analysis within the binding pocket, seven mutant candidates were predicted with better catalytic efficiency. By energy variety analysis, A355N, S356Y, and D525N among the seven mutant candidates were predicted with better thermostability. The expression and characterization results showed the mutant D525N had significant improvements in both enzyme activity and thermostability. Molecular dynamics simulations indicated that the mutations located within the 5 Å range of the catalytic domain, which could improve root mean squared deviation, electrostatic, Van der Waal interaction, and polar salvation values, and formed water bridge between the substrate and the enzyme. The study indicated that the computational strategy based on the binding energy, conservation degree and mutation energy analyses was effective to develop enzymes with better catalysis and thermostability, providing practical approach for developing industrial enzymes.


Asunto(s)
Aspergillus niger , Proteínas Fúngicas , Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Aspergillus niger/enzimología , Aspergillus niger/genética , Catálisis , Estabilidad de Enzimas/ética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Bioorg Chem ; 110: 104813, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774493

RESUMEN

MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymatic inhibition and thermodynamic analysis. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodynamic analysis were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.


Asunto(s)
Antineoplásicos/farmacología , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Diaminas/farmacología , Desarrollo de Medicamentos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Enzimas Reparadoras del ADN/metabolismo , Diaminas/síntesis química , Diaminas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
6.
Plant Mol Biol ; 104(4-5): 483-498, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32813232

RESUMEN

The phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein, a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, might involve in the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Cristalografía por Rayos X , ADN de Plantas/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Protoplastos , Factores de Transcripción/genética
7.
Plant Cell ; 29(8): 1970-1983, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28778955

RESUMEN

Histone deacetylases (HDACs) play important roles in regulating gene expression. In yeast and animals, HDACs act as components of multiprotein complexes that modulate transcription during various biological processes. However, little is known about the interacting proteins of plant HDACs. To identify the plant HDAC complexes and interacting proteins, we developed an optimized workflow using immunopurification coupled to mass spectrometry-based proteomics in Arabidopsis thaliana We found that the histone deacetylase HDA6 can interact with the histone methyltransferases SUVH4, SUVH5, and SUVH6 (SUVH4/5/6). Domain analysis revealed that the C-terminal regions of HDA6 and SUVH5 are important for their interaction. Furthermore, HDA6 interacts with SUVH4/5/6 and coregulates a subset of transposons through histone H3K9 methylation and H3 deacetylation. In addition, two phosphorylated serine residues, S427 and S429, were unambiguously identified in the C-terminal region of HDA6. Phosphomimetics (amino acid substitutions that mimic a phosphorylated protein) of HDA6 resulted in increased enzymatic activity, whereas the mutation of S427 to alanine in HDA6 abolished its interaction with SUVH5 and SUVH6, suggesting that the phosphorylation of HDA6 is important for its activity and function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Silenciador del Gen , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Ensamble y Desensamble de Cromatina , Cromatografía Liquida , Secuencia Conservada , Flores/fisiología , Histona Desacetilasas/química , Histona Metiltransferasas , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Técnicas del Sistema de Dos Híbridos
8.
Proc Natl Acad Sci U S A ; 114(10): E1815-E1824, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223489

RESUMEN

Far-red (FR) light-coupled jasmonate (JA) signaling is necessary for plant defense and development. FR insensitive 219 (FIN219) is a member of the Gretchen Hagen 3 (GH3) family of proteins in Arabidopsis and belongs to the adenylate-forming family of enzymes. It directly controls biosynthesis of jasmonoyl-isoleucine in JA-mediated defense responses and interacts with FIN219-interacting protein 1 (FIP1) under FR light conditions. FIN219 and FIP1 are involved in FR light signaling and are regulators of the interplay between light and JA signaling. However, how their interactions affect plant physiological functions remains unclear. Here, we demonstrate the crystal structures of FIN219-FIP1 while binding with substrates at atomic resolution. Our results show an unexpected FIN219 conformation and demonstrate various differences between this protein and other members of the GH3 family. We show that the rotated C-terminal domain of FIN219 alters ATP binding and the core structure of the active site. We further demonstrate that this unique FIN219-FIP1 structure is crucial for increasing FIN219 activity and determines the priority of substrate binding. We suggest that the increased FIN219 activity resulting from the complex form, a conformation for domain switching, allows FIN219 to switch to its high-affinity mode and thereby enhances JA signaling under continuous FR light conditions.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Conformación Proteica , Factores de Escisión y Poliadenilación de ARNm/química , Adenosina Trifosfato/química , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Ciclopentanos/química , Regulación de la Expresión Génica de las Plantas/genética , Luz , Complejos Multiproteicos/química , Oxilipinas/química , Unión Proteica/genética , Transducción de Señal , Factores de Escisión y Poliadenilación de ARNm/genética
9.
Int J Mol Sci ; 20(24)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817978

RESUMEN

Citrus fruits are mainly consumed as fresh fruit and processed juice products. They serve as nutritional and a tasty diet in our daily life. However, the formidable bitterness and delayed bitterness significantly impact the citrus industry attributable to the two major bitter compounds naringin and limonin. The extremely sour and acidic also negatively affects the sensory quality of citrus products. Citrus breeding programs have developed different strategies to improve citrus quality and a wealth of studies have aimed to uncover the genetic and biochemical basis of citrus flavor. In this minireview, we outline the major genes characterized to be involved in pathways shaping the sweet, bitter, or sour taste in citrus, and discuss briefly about the possible approaches to modify citrus taste by genetic engineering.


Asunto(s)
Citrus/química , Frutas/química , Gusto , Citrus/metabolismo , Flavanonas , Frutas/metabolismo , Ingeniería Genética , Limoninas
10.
Org Biomol Chem ; 16(42): 7820-7832, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30168823

RESUMEN

HDAC6 receives great attention because of its therapeutic potential for the treatment of various diseases. Selective fluorescence imaging for HDAC6 is important for its pathological and biological studies. However, specific detection of HDAC6 by using a fluorescent small molecule probe remains a great challenge. Herein, a series of fluorescent HDAC6-selective inhibitors incorporating a naphthalimide skeleton were designed and synthesized. A structure-activity relationship study identified that compound JW-1 had the greatest inhibitory activity and superior specificity against HDAC6. JW-1 could substantially increase α-tubulin acetylation and was active against a panel of six cancer cell lines. Photophysical characterization and cellular imaging of MDA-MB-231 cells demonstrated that JW-1 is a highly fluorescent, cell penetrable, small-molecule inhibitor of HDAC6 that can be used for the detection of HDAC6 in complex cellular environments.


Asunto(s)
Colorantes Fluorescentes/química , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Imagen Óptica , Relación Estructura-Actividad
11.
Microbiology (Reading) ; 159(Pt 6): 1136-1148, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23519159

RESUMEN

Previously, we have identified an avirulent Ralstonia solanacearum mutant carrying a transposon insertion in RSc0411, a gene homologous to the Escherichia coli LPS-transporting protein LptC. However, how the disruption of RSc0411 affects the bacterium-plant interactions and leads to decreased pathogenicity was not known. Here we show that the disruption of RSc0411 leads to pleiotropic defects, including reducing bacterial motility, biofilm formation, root attachment, rough-form LPS production and virulence in tomato and increasing membrane permeability. Disruption of the orthologous RSc0411 present in other R. solanacearum strains proves that most of these functions are conserved in the species. In contrast, trans-complementation analyses show that only RSc0411 orthologues from closely related bacteria can rescue the defects of the disruption mutant. These results enable us to propose a function for RSc0411, and for the clustered genes, in LPS biogenesis, and for the first time, to our knowledge, also a role of a gene from the DUF1239 gene family in bacterial pathogenicity. In addition and notably, the RSc0411 mutant displays a strain-specific phenotype for hypersensitive response (HR), in which the RSc0411 disruption impairs the HR caused by strain Pss190 but not that by strain Pss1308. Consistent with this strain-specific defect, the mutation clearly affects expression of the type III secretion system (T3SS) in Pss190 but not in other strains, suggesting that the HR-deficient phenotype of the RSc0411 mutant in Pss190 is due to impairment of the T3SS and thus RSc0411 has a strain-specific role in the T3SS activity of R. solanacearum.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Eliminación de Gen , Prueba de Complementación Genética , Locomoción , Solanum lycopersicum/microbiología , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/fisiología
12.
Commun Biol ; 6(1): 219, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828846

RESUMEN

The Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH6 are redundantly involved in silencing of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly interact with the histone deacetylase HDA6 to synergistically regulate TE expression. However, the function of KYP/SUVH5/6 in plant development is still unclear. The transcriptional factors ASYMMETRIC LEAVES1 (AS1) and AS2 form a transcription complex, which is involved in leaf development by repressing the homeobox genes KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) and KNAT2. In this study, we found that KYP and SUVH5/6 directly interact with AS1-AS2 to repress KNAT1 and KNAT2 by altering histone H3 acetylation and H3K9 dimethylation levels. In addition, KYP can directly target the promoters of KNAT1 and KNAT2, and the binding of KYP depends on AS1. Furthermore, the genome-wide occupancy profile of KYP indicated that KYP is enriched in the promoter regions of coding genes, and the binding of KYP is positively correlated with that of AS1 and HDA6. Together, these results indicate that Arabidopsis H3K9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to alter histone H3 acetylation and H3K9 dimethylation from KNAT1 and KNAT2 loci.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Metiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Hojas de la Planta , Proteínas de Homeodominio/genética , Proteínas de Arabidopsis/metabolismo , Histona Desacetilasas/metabolismo
13.
Biomed Pharmacother ; 166: 115429, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673018

RESUMEN

Neuroblastoma, a childhood cancer affecting the sympathetic nervous system, continues to challenge the development of potent treatments due to the limited availability of druggable targets for this aggressive illness. Recent investigations have uncovered that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme for de novo serine synthesis, serves as a non-oncogene dependency in high-risk neuroblastoma. In this study, we show that homoharringtonine (HHT) acts as a PHGDH inhibitor, inducing intricate alterations in cellular metabolism, and thus providing an efficient treatment for neuroblastoma. We have experimentally verified the reliance of neuroblastoma on PHGDH and employed molecular docking, thermodynamic evaluations, and X-ray crystallography techniques to determine the bond interactions between HHT and PHGDH. Administering HHT to treat neuroblastoma resulted in effective cell elimination in vitro and tumor reduction in vivo. Metabolite and functional assessments additionally disclosed that HHT treatment suppressed de novo serine synthesis, initiating intricate metabolic reconfiguration and oxidative stress in neuroblastoma. Collectively, these discoveries highlight the potential of targeting PHGDH using HHT as a potent approach for managing high-risk neuroblastoma.


Asunto(s)
Neuroblastoma , Fosfoglicerato-Deshidrogenasa , Humanos , Niño , Homoharringtonina , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos , Neuroblastoma/tratamiento farmacológico , Serina
14.
Plant Physiol ; 157(3): 1015-25, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21908686

RESUMEN

The membrane protein AtTLP18.3 of Arabidopsis (Arabidopsis thaliana) contains a domain of unknown function, DUF477; it forms a polysome with photosynthetic apparatuses in the thylakoid lumen. To explore the molecular function of AtTLP18.3, we resolved its crystal structures with residues 83 to 260, the DUF477 only, and performed a series of biochemical analyses to discover its function. The gene expression of AtTLP18.3 followed a circadian rhythm. X-ray crystallography revealed the folding of AtTLP18.3 as a three-layer sandwich with three α-helices in the upper layer, four ß-sheets in the middle layer, and two α-helices in the lower layer, which resembles a Rossmann fold. Structural comparison suggested that AtTLP18.3 might be a phosphatase. The enzymatic activity of AtTLP18.3 was further confirmed by phosphatase assay with various substrates (e.g. p-nitrophenyl phosphate, 6,8-difluoro-4-methylumbelliferyl phosphate, O-phospho-L-serine, and several synthetic phosphopeptides). Furthermore, we obtained the structure of AtTLP18.3 in complex with O-phospho-L-serine to identify the binding site of AtTLP18.3. Our structural and biochemical studies revealed that AtTLP18.3 has the molecular function of a novel acid phosphatase in the thylakoid lumen. DUF477 is accordingly renamed the thylakoid acid phosphatase domain.


Asunto(s)
Fosfatasa Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Pruebas de Enzimas/métodos , Tilacoides/enzimología , Fosfatasa Ácida/química , Fosfatasa Ácida/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Secuencia Conservada/genética , Cristalografía por Rayos X , Cianobacterias/enzimología , Regulación de la Expresión Génica de las Plantas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoserina/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato
15.
Planta ; 234(2): 243-54, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21416241

RESUMEN

Tarocystatin (CeCPI) from taro (Colocasia esculenta cv. Kaohsiung no. 1), a group-2 phytocystatin, shares a conserved N-terminal cystatin domain (NtD) with other phytocystatins but contains a C-terminal cystatin-like extension (CtE). The structure of the tarocystatin-papain complex and the domain interaction between NtD and CtE in tarocystatin have not been determined. We resolved the crystal structure of the phytocystatin-papain complex at resolution 2.03 Å. Surprisingly, the structure of the NtD-papain complex in a stoichiometry of 1:1 could be built, with no CtE observed. Only two remnant residues of CtE could be built in the structure of the CtE-papain complex. Therefore, CtE is easily digested by papain. To further characterize the interaction between NtD and CtE, three segments of tarocystatin, including the full-length (FL), NtD and CtE, were used to analyze the domain-domain interaction and the inhibition ability. The results from glutaraldehyde cross-linking and yeast two-hybrid assay indicated the existence of an intrinsic flexibility in the region linking NtD and CtE for most tarocystatin molecules. In the inhibition activity assay, the glutathione-S-transferase (GST)-fused FL showed the highest inhibition ability without residual peptidase activity, and GST-NtD and FL showed almost the same inhibition ability, which was higher than with NtD alone. On the basis of the structures, the linker flexibility and inhibition activity of tarocystatins, we propose that the overhangs from the cystatin domain may enhance the inhibition ability of the cystatin domain against papain.


Asunto(s)
Colocasia/química , Cistatinas/química , Cistatinas/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Papaína/antagonistas & inhibidores , Papaína/química , Secuencia de Aminoácidos , Colocasia/enzimología , Colocasia/genética , Colocasia/metabolismo , Cristalografía por Rayos X , Cistatinas/aislamiento & purificación , Cistatinas/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Papaína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Alineación de Secuencia
16.
Nucleic Acids Res ; 37(Web Server issue): W396-401, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19483101

RESUMEN

This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein-DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are essential for correct gene regulation. In this respect, ProteDNA is distinctive since it has been designed to identify sequence-specific binding residues. In order to accommodate users with different application needs, ProteDNA has been designed to operate under two modes, namely, the high-precision mode and the balanced mode. According to the experiments reported in this article, under the high-precision mode, ProteDNA has been able to deliver precision of 82.3%, specificity of 99.3%, sensitivity of 49.8% and accuracy of 96.5%. Meanwhile, under the balanced mode, ProteDNA has been able to deliver precision of 60.8%, specificity of 97.6%, sensitivity of 60.7% and accuracy of 95.4%. ProteDNA is available at the following websites: http://protedna.csbb.ntu.edu.tw/, http://protedna.csie.ntu.edu.tw/, http://bio222.esoe.ntu.edu.tw/ProteDNA/.


Asunto(s)
Proteínas de Unión al ADN/química , Programas Informáticos , Factores de Transcripción/química , Secuencia de Bases , Sitios de Unión , ADN/química , Internet , Análisis de Secuencia de Proteína
17.
Front Plant Sci ; 12: 672035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135927

RESUMEN

Absorption of macronutrients such as nitrogen is a critical process for land plants. There is little information available on the correlation between the root evolution of land plants and the protein regulation of nitrogen absorption and responses. NIN-like protein (NLP) transcription factors contain a Phox and Bem1 (PB1) domain, which may regulate nitrate-response genes and seem to be involved in the adaptation to growing on land in terms of plant root development. In this report, we reveal the NLP phylogeny in land plants and the origin of NLP genes that may be involved in the nitrate-signaling pathway. Our NLP phylogeny showed that duplication of NLP genes occurred before divergence of chlorophyte and land plants. Duplicated NLP genes may lost in most chlorophyte lineages. The NLP genes of bryophytes were initially monophyletic, but this was followed by divergence of lycophyte NLP genes and then angiosperm NLP genes. Among those identified NLP genes, PB1, a protein-protein interaction domain was identified across our phylogeny. To understand how protein-protein interaction mediate via PB1 domain, we examined the PB1 domain of Arabidopsis thaliana NLP7 (AtNLP7) in terms of its molecular oligomerization and function as representative. Based on the structure of the PB1 domain, determined using small-angle x-ray scattering (SAXS) and site-directed mutagenesis, we found that the NLP7 PB1 protein forms oligomers and that several key residues (K867 and D909/D911/E913/D922 in the OPCA motif) play a pivotal role in the oligomerization of NLP7 proteins. The fact that these residues are all conserved across land plant lineages means that this oligomerization may have evolved after the common ancestor of extant land plants colonized the land. It would then have rapidly become established across land-plant lineages in order to mediate protein-protein interactions in the nitrate-signaling pathway.

18.
ACS Sens ; 6(3): 995-1002, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33444502

RESUMEN

Whole-cell biosensors are useful for monitoring heavy metal toxicity in public health and ecosystems, but their development has been hindered by intrinsic trade-offs between sensitivity and specificity. Here, we demonstrated an effective engineering solution by building a sensitive, specific, and high-response biosensor for carcinogenic cadmium ions. We genetically programmed the metal transport system of Escherichia coli to enrich intracellular cadmium ions and deprive interfering metal species. We then selected 16 cadmium-sensing transcription factors from the GenBank database and tested their reactivity to 14 metal ions in the engineered E. coli using the expression of the green fluorescent protein as the readout. The resulting cadmium biosensor was highly specific and showed a detection limit of 3 nM, a linear increase in fluorescent intensities from 0 to 200 nM, and a maximal 777-fold signal change. Using this whole-cell biosensor, a smartphone, and low-tech equipment, we developed a simple assay capable of measuring cadmium ions at the same concentration range in irrigation water and human urine. This method is user-friendly and cost-effective, making it affordable to screen large amounts of samples for cadmium toxicity in agriculture and medicine. Moreover, our work highlights natural gene repositories as a treasure chest for bioengineering.


Asunto(s)
Técnicas Biosensibles , Cadmio , Ecosistema , Escherichia coli/genética , Humanos , Metales
19.
Plant Methods ; 15: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367226

RESUMEN

BACKGROUND: The cellulose synthase complex (CSC), composed of cellulose synthase (CesA) proteins, is a catalytic enzyme complex involved in cellulose synthesis in the plant cell. CesA proteins synthesize cellulose microfibrils corresponding to the microtubule direction and export linear products across the plasma membrane. However, the CSC arrangement and the mechanism of cellulose synthesis in plant cells remain unclear. Purified CesA proteins are required to determine biochemical and biophysical characteristics. RESULTS: In this study, we constructed, expressed, and purified six heterologously expressed cellulose synthases from Bambusa oldhamii (BoCesA) and analyzed the associated enzyme activity. The conjugating sequences of the maltose-binding protein (MBP) gene and the BoCesA genes were constructed into the expression vector pYES2/CT and were further transformed into yeast cells (BCY123) for fermentation culturing. Purified BoCesA recombinant proteins were obtained by a two-step purification procedure, consisting of immobilized metal affinity chromatography to purify MBP-BoCesAs and size-exclusion chromatography (Superdex-200) to isolate BoCesAs in oligomeric form. The enzymatic activity of oligomeric BoCesAs with 80% purity was determined by partially methylated alditol acetate (PMAA)-coupled gas chromatography-mass spectrometry (GC-MS) analysis. Furthermore, the long fiber-like products synthesized by oligomeric BoCesAs were observed under a transmission electron microscope (TEM) and were further confirmed as cellulose microfibril products. CONCLUSIONS: In this study, we successfully established a heterologous expression and purification system for BoCesAs. The purified recombinant BoCesA proteins display enzyme activity and can produce protein in milligram quantities for further studies on molecular composition and structure.

20.
J Agric Food Chem ; 67(10): 2926-2935, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30789260

RESUMEN

α-L-Rhamnosidase is a glycoside hydrolase capable of removing naringin from citrus juice. However, α-L-rhamnosidases always have broad substrate spectra, causing negative effects on citrus juice. In this study, a α-L-rhamnosidase-expressing fungal strain, JMU-TS529, was identified, and its α-L-rhamnosidase was characterized. As a result, JMU-TS529 was identified as Aspergillus tubingensis via morphological and molecular characteristics. The predicted protein sequence shared an amino acid identity of less than 30% with previously characterized α-L-rhamnosidases. The optimal pH and temperature were 4.0 and 50-60 °C, respectively. Most importantly, the α-L-rhamnosidase showed a strong ability to hydrolyze naringin but scarcely acted on other substrates. Furthermore, the enzyme could efficiently remove naringin from pomelo juice without changing its attractive aroma. These results indicate that the present enzyme represents a new clade of Aspergillus α-L-rhamnosidase that is desirable for debittering citrus juice, providing a better alternative for improving the quality of citrus juice.


Asunto(s)
Aspergillus/enzimología , Citrus/química , Jugos de Frutas y Vegetales/análisis , Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Aspergillus/genética , Biocatálisis , Estabilidad de Enzimas , Manipulación de Alimentos , Frutas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA