Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Physiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850037

RESUMEN

Angiosperm trees usually develop tension wood (TW) in response to gravitational stimulation. TW comprises abundant gelatinous (G-) fibers with thick G-layers primarily composed of crystalline cellulose. Understanding of the pivotal factors governing G-layer formation in TW fiber remains elusive. This study elucidates the role of a Populus trichocarpa COBRA family protein, PtrCOB3, in the G-layer formation of TW fibers. PtrCOB3 expression was upregulated, and its promoter activity was enhanced during TW formation. Comparative analysis with wild-type trees revealed that ptrcob3 mutants, mediated by Cas9/gRNA gene editing, were incapable of producing G-layers within TW fibers and showed severely impaired stem lift. Fluorescence immunolabelling data revealed a dearth of crystalline cellulose in the tertiary cell wall (TCW) of ptrcob3 TW fibers. The role of PtrCOB3 in G-layer formation is contingent upon its native promoter, as evidenced by the comparative phenotypic assessments of pCOB11::PtrCOB3, pCOB3::PtrCOB3, and pCOB3::PtrCOB11 transgenic lines in the ptrcob3 background. Overexpression of PtrCOB3 under the control of its native promoter expedited G-layer formation within TW fibers. We further identified three transcription factors that bind to the PtrCOB3 promoter and positively regulate its transcriptional levels. Alongside the primary TCW synthesis genes, these findings enable the construction of a two-layer transcriptional regulatory network for the G-layer formation of TW fibers. Overall, this study uncovers mechanistic insight into TW formation, whereby a specific COB protein executes the deposition of cellulose, and consequently, G-layer formation within TW fibers.

2.
Opt Express ; 32(7): 12645-12655, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571082

RESUMEN

The space time frequency transfer plays a crucial role in applications such as space optical clock networks, navigation, satellite ranging, and space quantum communication. Here, we propose a high-precision space time frequency transfer and time synchronization scheme based on a simple intensity modulation/direct detection (IM/DD) laser communication system, which occupies a communication bandwidth of approximately 0.2%. Furthermore, utilizing an optical-frequency comb time frequency transfer system as an out-of-loop reference, experimental verification was conducted on a 113 km horizontal atmospheric link, with a long-term stability approximately 8.3 × 10-16 over a duration of 7800 seconds. Over an 11-hour period, the peak-to-peak wander is approximately 100 ps. Our work establishes the foundation of the time frequency transfer, based on the space laser communication channel, for future ground-to-space and inter-satellite links.

3.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892187

RESUMEN

Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in P. trichocarpa. The 49 PtTLP genes were classified into 10 clusters, and gene structures, conserved motifs, and expression patterns were analyzed in these PtTLP genes. Among 49 PtTLP genes, the PtTLP6 transcription level is preferentially high in stems, and GUS staining signals were mainly detected in the phloem tissues of the PtTLP6pro::GUS transgenic poplars. We generated transgenic Arabidopsis plants overexpressing the PtTLP6 gene, and its overexpression lines showed early flowering phenotypes. However, the expression levels of main flowering regulating genes were not significantly altered in these PtTLP6-overexpressing plants. Our data further showed that overexpression of the PtTLP6 gene led to a reactive oxygen species (ROS) burst in Arabidopsis, which might advance the development process of transgenic plants. In addition, subcellular localization of PtTLP6-fused green fluorescent protein (GFP) was in peroxisome, as suggested by tobacco leaf transient transformation. Overall, this work provides a comprehensive analysis of the TLP gene family in Populus and an insight into the role of TLPs in woody plants.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Floema , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Populus/genética , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Floema/metabolismo , Floema/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Flores/genética , Flores/metabolismo , Genoma de Planta
4.
Plant J ; 110(4): 978-993, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218100

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.


Asunto(s)
Populus , ARN Largo no Codificante , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/metabolismo , Populus/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/fisiología , Estrés Salino/genética
5.
J Integr Plant Biol ; 65(8): 2001-2017, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37014030

RESUMEN

In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Infertilidad , Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Celulosa/metabolismo , Infertilidad/metabolismo
6.
J Exp Bot ; 73(19): 6876-6890, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36040843

RESUMEN

Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.


Asunto(s)
Proteasas de Ácido Aspártico , Populus , Populus/metabolismo , Madera , Lignina/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema , Plantas Modificadas Genéticamente/metabolismo , Proteasas de Ácido Aspártico/genética , Apoptosis , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613871

RESUMEN

Fasciclin-like arabinogalactan proteins (FLAs) play an important role in plant development and adaptation to the environment. However, the roles of FLAs in wood formation remain poorly understood. Here, we identified a total of 50 PtrFLA genes in poplar. They were classified into four groups: A to D, among which group A was the largest group with 28 members clustered into four branches. Most PtrFLAs of group A were dominantly expressed in developing xylem based on microarray and RT-qPCR data. The roles of PtrFLA40 and PtrFLA45 in group A were investigated via the Cas9/gRNA-induced mutation lines. Loss of PtrFLA40 and PtrFLA45 increased stem length and diameter in ptrfla40ptrfla45 double mutants, but not in ptrfla40 or ptrfla45 single mutants. Further, our findings indicated that the ptrfla40ptrfla45 mutants enlarged the cell size of xylem fibers and vessels, suggesting a negative modulation in stem xylem cell size. In addition, wood lignin content in the ptrfla40fla45 mutants was increased by nearly 9%, and the lignin biosynthesis-related genes were significantly up-regulated in the ptrfla40fla45 mutants, in agreement with the increase in wood lignin content. Overall, Cas9/gRNA-mediated mutations in PtrFLA40 and PtrFLA45 reveal redundant roles in modulating wood cell size and secondary cell wall (SCW) synthesis in poplar.


Asunto(s)
Populus , Madera , Madera/metabolismo , Lignina/metabolismo , Sistemas CRISPR-Cas , Xilema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Populus/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
New Phytol ; 231(4): 1478-1495, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33713445

RESUMEN

Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.


Asunto(s)
Pared Celular/enzimología , Glucosiltransferasas/metabolismo , Populus , Sistemas CRISPR-Cas , Celulosa/metabolismo , Técnicas de Inactivación de Genes , Populus/enzimología , Populus/genética , ARN Guía de Kinetoplastida , Madera/metabolismo
9.
J Environ Manage ; 271: 110896, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778258

RESUMEN

The compensation of upstream protective area should be determined carefully. This paper provides a comprehensive evaluation framework for economic assessments on the treatment of wastewater discharged into a river basin. We explore the rational costs of compensation and the funding allocation in the Xin'an River basin based on rate agreements. The compensation is determined in accordance with the total compensation model based on the opportunity cost method and allocated by the method of information entropy. In this study, we identify the total compensation payment and distribution of funds in each district and county in the upstream area (Huangshan). Results show that the She county can receive the highest compensation, and the Tunxi district deserves the lowest compensation. In addition, this paper demonstrates that the existing compensation is insufficient for the reduction of water pollutants in the upstream area. Our findings contribute to the existing schemes of ecosystem services payment and improve the environmental decision-making.


Asunto(s)
Contaminantes Ambientales , Ríos , China , Ecosistema , Monitoreo del Ambiente , Femenino , Agua Dulce
10.
BMC Plant Biol ; 19(1): 276, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234799

RESUMEN

BACKGROUND: Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS: A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS: Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.


Asunto(s)
Proteasas de Ácido Aspártico/genética , Genes de Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Populus/genética , Madera/crecimiento & desarrollo , Pared Celular/genética , Secuencia Conservada , Duplicación de Gen , Perfilación de la Expresión Génica , Glicosilación , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/enzimología , Populus/crecimiento & desarrollo , Regiones Promotoras Genéticas
11.
Plant Physiol ; 168(1): 205-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25810095

RESUMEN

Maturation of chloroplast ribosomal RNAs (rRNAs) comprises several endoribonucleolytic and exoribonucleolytic processing steps. However, little is known about the specific enzymes involved and the cleavage steps they catalyze. Here, we report the functional characterization of the single Arabidopsis (Arabidopsis thaliana) gene encoding a putative YbeY endoribonuclease. AtYbeY null mutants are seedling lethal, indicating that AtYbeY function is essential for plant growth. Knockdown plants display slow growth and show pale-green leaves. Physiological and ultrastructural analyses of atybeY mutants revealed impaired photosynthesis and defective chloroplast development. Fluorescent microcopy analysis showed that, when fused with the green fluorescence protein, AtYbeY is localized in chloroplasts. Immunoblot and RNA gel-blot assays revealed that the levels of chloroplast-encoded subunits of photosynthetic complexes are reduced in atybeY mutants, but the corresponding transcripts accumulate normally. In addition, atybeY mutants display defective maturation of both the 5' and 3' ends of 16S, 23S, and 4.5S rRNAs as well as decreased accumulation of mature transcripts from the transfer RNA genes contained in the chloroplast rRNA operon. Consequently, mutant plants show a severe deficiency in ribosome biogenesis, which, in turn, results in impaired plastid translational activity. Furthermore, biochemical assays show that recombinant AtYbeY is able to cleave chloroplast rRNAs as well as messenger RNAs and transfer RNAs in vitro. Taken together, our findings indicate that AtYbeY is a chloroplast-localized endoribonuclease that is required for chloroplast rRNA processing and thus for normal growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Secuencia Conservada , Endorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN del Cloroplasto/genética , ARN Ribosómico/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Endorribonucleasas/química , Endorribonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fotosíntesis , Hojas de la Planta/fisiología , Polirribosomas/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
12.
Environ Sci Pollut Res Int ; 31(7): 10702-10716, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38206464

RESUMEN

Land use and land cover (LULC) will cause large flows of carbon sources and sinks. As the world's largest carbon emitter with a complicated LULC, China's carbon emissions have profound implications for its ecological environment and future development. In this paper, we account for the land-use changes and carbon emissions of 30 Chinese provinces and cities in China from 2000 to 2020. Furthermore, the spatial correlation of carbon emissions among the study areas is explored. Four typical regions with spatial association (Beijing, Hebei, Sichuan, and Anhui) are selected, and their land-use change trends in 2025 and 2030 are simulated to predict the total carbon emissions in the future. The results show that the distribution of land-use in China is mainly cultivated and woodland, but the growth of urban built-up (UBL) land area indirectly leads to the continuous increase of carbon emissions. Total carbon emissions have increased over the past two decades, albeit at a slower growth rate, with some provinces experiencing no further growth. In the typical regional carbon emission simulation, it is found that the carbon emissions of the four provinces would show a downward trend in the future. The main reason is the reduction in indirect carbon emissions from fossil energy in UBL, while the other part is the influx of carbon sinks due to grassland, woodland, etc. We recommended that future carbon reduction measures should focus and prioritize controlling fossil energy and mitigating carbon emissions from UBL. Simultaneously, the significant contribution of forests and other land types as carbon sinks should be acknowledged to better implement China's carbon neutral commitment.


Asunto(s)
Carbono , Bosques , Carbono/análisis , China , Beijing , Análisis Espacio-Temporal , Dióxido de Carbono/análisis , Desarrollo Económico
13.
Mol Biol Rep ; 40(2): 1385-96, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23096088

RESUMEN

Plant NADP-malic enzyme (NADP-ME, EC 1.1.1.40) participates in a large number of metabolic pathways, but little is known about the NADP-ME family in woody plants or trees. Here, we characterized the tree Populus trichocarpa NADP-ME (PtNADP-ME) family and the properties of the family members. Five NADP-ME genes (PtNADP-ME1-PtNADP-ME5) were found in the genome of Populus. Semi-quantitative RT-PCR analysis show that the transcription levels of PtNADP-ME1 in lignified stems and roots are clearly higher than in other tissues, and PtNADP-ME2, PtNADP-ME3, PtNADP-ME4 and PtNADP-ME5 are broadly expressed in various tissues. PtNADP-ME gene expression was found to respond to salt and osmotic stresses, and NaCl salts upregulated the transcripts of putative plastidic ones (PtNADP-ME4 and PtNADP-ME5) significantly. Further, the NADP-ME activities of Populus seedlings increased at least two-fold under NaCl, mannitol and PEG treatments. Also, the expression of PtNADP-ME2 and PtNADP-ME3 increased during the course of leaf wounding. Each recombinant PtNADP-ME proteins were expressed and purified from Escherichia coli, respectively. Coomassie brilliant blue and NADP-ME activity staining on native polyacrylamide gels showed different oligomeric states of the recombinant PtNADP-MEs in vitro. Noticeably, the cytosolic PtNADP-ME2 aggregates as octamers and hexadecamers while the plastidic PtNADP-ME4 resembles hexamers and octamers. The four PtNADP-ME proteins except for PtNADP-ME1 have high activities on native polyacrylamide gels including different forms for PtNADP-ME2 (octamers and hexadecamers) or for PtNADP-ME4 (hexamers and octamers). High concentrations of NADP substrate decreased the activities of all PtNADP-MEs slightly, while the malate had no effect on them. The kinetic parameters (V (max), K (m), K (cat), and K (cat)/K (m)) of each isoforms were summarized. Our data show the different effects of metabolites (influx into tricarboxylic acid cycle or Calvin cycle) on the activity of the individual PtNADP-ME in vitro. According to phylogenetic analysis, five PtNADP-MEs are clustered into cytosolic dicot, plastidic dicot, and monocot and dicot cytosolic groups in a phylogenetic tree. These results suggest that woody Populus NADP-ME family have diverse properties, and possible roles are discussed.


Asunto(s)
Malato-Deshidrogenasa (NADP+)/genética , Proteínas de Plantas/genética , Populus/enzimología , Escherichia coli , Evolución Molecular , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Cinética , Malato-Deshidrogenasa (NADP+)/biosíntesis , Malato-Deshidrogenasa (NADP+)/química , Malatos/química , Filogenia , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Populus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tolerancia a la Sal , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Estrés Fisiológico
14.
Int J Mol Sci ; 14(7): 12994-3004, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23797660

RESUMEN

Plant mitochondrial NAD-malic enzyme (NAD-ME), which is composed of α- and ß-subunits in many species, participates in many plant biosynthetic pathways and in plant respiratory metabolism. However, little is known about the properties of woody plant NAD-MEs. In this study, we analyzed four NAD-ME genes (PtNAD-ME1 through PtNAD-ME4) in the genome of Populus trichocarpa. PtNAD-ME1 and -2 encode putative α-subunits, while PtNAD-ME3 and -4 encode putative ß-subunits. The Populus NAD-MEs were expressed in Escherichia coli cells as GST-tagged fusion proteins. Each recombinant GST-PtNAD-ME protein was purified to near homogeneity by glutathione-Sepharose 4B affinity chromatography. Milligram quantities of each native protein were obtained from 1 L bacterial cultures after cleavage of the GST tag. Analysis of the enzymatic properties of these proteins in vitro indicated that α-NAD-MEs are more active than ß-NAD-MEs and that α- and ß-NAD-MEs presented different kinetic properties (Vmax, kcat and kcat/Km). The effect of different amounts of metabolites on the activities of Populus α- and ß-NAD-MEs was assessed in vitro. While none of the metabolites evaluated in our assays activated Populus NAD-ME, oxalacetate and citrate inhibited all α- and ß-NAD-MEs and glucose-6-P and fructose inhibited only the α-NAD-MEs.


Asunto(s)
NAD , Populus , Escherichia coli/metabolismo , Cinética , NAD/metabolismo , Populus/metabolismo , Proteínas Recombinantes/genética
15.
Plant J ; 66(5): 781-95, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21323773

RESUMEN

Glycerophosphodiester phosphodiesterase (GDPD), which hydrolyzes glycerophosphodiesters into sn-glycerol-3-phosphate (G-3-P) and the corresponding alcohols, plays an important role in various physiological processes in both prokaryotes and eukaryotes. However, little is known about the physiological significance of GDPD in plants. Here, we characterized the Arabidopsis GDPD family that can be classified into canonical GDPD (AtGDPD1-6) and GDPD-like (AtGDPDL1-7) subfamilies. In vitro analysis of enzymatic activities showed that AtGDPD1 and AtGDPDL1 hydrolyzed glycerolphosphoglycerol, glycerophosphocholine and glycerophosphoethanolamine, but the maximum activity of AtGDPD1 was much higher than that of AtGDPDL1 under our assay conditions. Analyses of gene expression patterns revealed that all AtGDPD genes except for AtGDPD4 were transcriptionally active in flowers and siliques. In addition, the gene family displayed overlapping and yet distinguishable patterns of expression in roots, leaves and stems, indicating functional redundancy as well as specificity of GDPD genes. AtGDPDs but not AtGDPDLs are up-regulated by inorganic phosphate (P(i) ) starvation. Loss-of-function of the plastid-localized AtGDPD1 leads to a significant decrease in GDPD activity, G-3-P content, P(i) content and seedling growth rate only under P(i) starvation compared with the wild type (WT). However, membrane lipid compositions in the P(i) -deprived seedlings remain unaltered between the AtGDPD1 knockout mutant and WT. Thus, we suggest that the GDPD-mediated lipid metabolic pathway may be involved in release of P(i) from phospholipids during P(i) starvation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Homeostasis , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Familia de Multigenes , Mutagénesis Insercional , Mutación , Fosfatidiletanolaminas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo
16.
Soft comput ; 26(17): 8537-8551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35818583

RESUMEN

This paper develops an integrated framework to forecast the volatility of crude oil prices by considering the impacts of extreme events (structural breaks). The impacts of extreme events are vital to improving prediction accuracy. Aiming to demonstrate the crude oil price fluctuation and the impacts of external events, this paper employs the complementary ensemble empirical mode decomposition (CEEMD). It decomposes the crude oil price into some constituents at various frequencies to extract a market fluctuation, a shock from extreme events and a long-term trend. The shock from extreme events is found to be the most crucial element in deciding the crude oil prices. Then we combine the iterative cumulative sum of squares (ICSS) test with the Chow test to get the structural breaks and analyze the extreme event impacts. Finally, this paper combines the structural breaks, the autoregressive integrated moving average (ARIMA) model, and the support vector machine (SVM) to make a forecast of the crude oil prices. The empirical process proves that the CEEMD-ARIMA-SVM model with structural breaks performs the best when compared with the other ARIMA-type models and SVM-type models. The framework offers an insightful view to help decision-makers and can be used in many areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s00500-022-07276-5.

17.
Plant Sci ; 324: 111434, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029898

RESUMEN

Histone deacetylases (HDACs) are important enzymes participating in histone modification and epigenetic regulation of gene transcription. HDACs play an essential role in plant development and stress responses. To date, the role of HDACs is largely uninvestigated in woody plants. In this study, we identified a RPD3/HDA1-type HDAC, named 84KHDA909, from 84 K poplar (Populus alba × Populus glandulosa). The protein encoded by 84KHDA909 contained an HDAC domain. The 84KHDA909 was responsive to drought, salt, and cold stresses, but displayed different expression patterns. Overexpression of 84KHDA909 improved root growth, and conferred enhanced tolerance to drought and salt stresses in Arabidopsis. The transgenic plants displayed greater fresh weight, higher proline content and lower malondialdehyde (MDA) accumulation than the wild type. In the transgenic plants, transcript levels of several genes related to abscisic acid (ABA) biosynthesis and response were altered upon exposure to drought and salt stresses. Our results suggested that 84KHDA909 positively regulates drought and salt stress tolerance through ABA pathway.


Asunto(s)
Arabidopsis , Populus , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Sequías , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Malondialdehído , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Populus/metabolismo , Prolina/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
18.
Asian J Androl ; 24(3): 323-331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34747725

RESUMEN

We investigated the therapeutic effects of superoxide dismutase (SOD) from thermophilic bacterium HB27 on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and its underlying mechanisms. A Sprague-Dawley rat model of CP/CPPS was prepared and then administered saline or Thermus thermophilic (Tt)-SOD intragastrically for 4 weeks. Prostate inflammation and fibrosis were analyzed by hematoxylin and eosin staining, and Masson staining. Alanine transaminase (ALT), aspartate transaminase (AST), serum creatinine (CR), and blood urea nitrogen (BUN) levels were assayed for all animals. Enzyme-linked immunosorbent assays (ELISA) were performed to analyze serum cytokine concentrations and tissue levels of malondialdehyde, nitric oxide, SOD, catalase, and glutathione peroxidase. Reactive oxygen species levels were detected using dichlorofluorescein diacetate. The messenger ribonucleic acid (mRNA) expression of tissue cytokines was analyzed by reverse transcription polymerase chain reaction (RT-PCR), and infiltrating inflammatory cells were examined using immunohistochemistry. Nuclear factor-κB (NF-κB) P65, P38, and inhibitor of nuclear factor-κBα (I-κBα) protein levels were determined using western blot. Tt-SOD significantly improved histopathological changes in CP/CPPS, reduced inflammatory cell infiltration and fibrosis, increased pain threshold, and reduced the prostate index. Tt-SOD treatment showed no significant effect on ALT, AST, CR, or BUN levels. Furthermore, Tt-SOD reduced inflammatory cytokine expression in prostate tissue and increased antioxidant capacity. This anti-inflammatory activity correlated with decreases in the abundance of cluster of differentiation 3 (CD3), cluster of differentiation 45 (CD45), and macrophage inflammatory protein 1α (MIP1α) cells. Tt-SOD alleviated inflammation and oxidative stress by reducing NF-κB P65 and P38 protein levels and increasing I-κBα protein levels. These findings support Tt-SOD as a potential drug for CP/CPPS.


Asunto(s)
Dolor Crónico , Prostatitis , Animales , Citocinas/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Masculino , FN-kappa B/metabolismo , Dolor Pélvico/patología , Prostatitis/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa , Síndrome
19.
Mol Biol Rep ; 38(7): 4813-22, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21153767

RESUMEN

We have cloned a Na(+)/H(+) antiporter gene (GenBank accession no EF440291, PtNHA1) from Puccinellia tenuiflora (so-called alkali grass in Chinese) roots under NaCl salt stress. Its cDNA is 3775 bp and contains a 3414 bp open reading frame. The amino acid sequences of PtNHA1 show high identities with a putative plasma membrane Na(+)/H(+) antiporter from wheat. PtNHA1 was predicted to contain 11 hypothetical transmembrane domains in the N-terminal part and to localize in the plasma membrane. Genomic DNA gel blot analysis shows that PtNHA1 is a single-copy gene in the alkali grass genome. PtNHA1 is highly expressed in leaves, roots and shoots by RNA gel blot analysis. Furthermore, PtNHA1 gene expression of alkali grass was clearly up-regulated by NaCl salt stress. Overexpression of PtNHA1 in Arabidopsis resulted in enhanced tolerance of transgenic plants to NaCl stress. The ion contents analysis shows that, compared with the wild-type (WT), less Na(+) and more K(+) were accumulated in transgenic plants under NaCl stress. The results indicate that PtNHA1 play an important role in NaCl salt stress. Additionally, compared with the WT, total activities of ascorbate peroxidase (APX) and catalase (CAT), two key reactive oxygen species (ROS) detoxifying enzymes were high in transgenic plants under salt stress, respectively. The transcript levels of two APX genes (Apx1, s/mApx) and two CAT genes (Cat1, Cat2) in transgenic plants were higher than those in WT. This suggests that overexpression of PtNHA1 results in enhanced ROS-scavenging enzymes of transgenic plants under NaCl salt stress.


Asunto(s)
Membrana Celular/metabolismo , Poaceae/genética , Intercambiadores de Sodio-Hidrógeno/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Membrana Celular/efectos de los fármacos , Clonación Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Plantas Modificadas Genéticamente , Poaceae/efectos de los fármacos , Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Sodio/metabolismo , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
20.
Mol Biol Rep ; 38(2): 721-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20373030

RESUMEN

Bud dormancy in perennial plants adapts to environmental and seasonal changes. Bud dormancy is of ecological interest because it affects forest population growth characteristics and is of economical interest because it impacts wood production levels. To understand Pinus sylvestris L. var. mongolica litv. bud-dormancy and bud-burst mechanisms, we characterized the proteomes of their apical buds at the four critical stages that occur during the dormancy-to-growth transition. Ninety-six proteins with altered expression patterns were identified using NanoLC-ESI-MS/MS. The majority of these proteins (57%) are involved in metabolic and other cellular processes. For 28% of the proteins, a function could not be assigned. However, because their expression levels changed, they may be potential candidate bud development- or dormancy-related proteins. Of the 75 non-redundant bud proteins identified, ascorbate peroxidase, pathogenesis-related protein PR-10, and heat shock proteins dramatically increased during August and November, suggesting that they may involved in the initiation of bud dormancy. Conversely, S-adenosylmethionine synthetase, abscisic acid/stress-induced proteins, superoxide dismutase (SOD), caffeoyl-CoA O-methyltransferase, actin, and type IIIa membrane protein cp-wap13 had greater expression levels during April, suggesting that they may be involved in the initiation of bud dormancy-release. Cell division cycle protein 48 and eukaryotic initiation factors 4A-15 and 4A had greater expression levels during May, suggesting that they may regulate cell proliferate and differentiation in the shoot apical meristem. These observations provide insights into the molecular mechanisms that induce or break bud dormancy.


Asunto(s)
Pinus sylvestris/genética , Ácido Abscísico/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Cromatografía Liquida/métodos , Electroforesis en Gel Bidimensional/métodos , Regulación de la Expresión Génica de las Plantas , Metionina Adenosiltransferasa/metabolismo , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Estaciones del Año , Espectrometría de Masa por Ionización de Electrospray/métodos , Superóxido Dismutasa/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA