Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Plant J ; 118(3): 717-730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213282

RESUMEN

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Asunto(s)
Antocianinas , Apiaceae , Genoma de Planta , Genómica , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromosomas de las Plantas/genética
2.
BMC Plant Biol ; 23(1): 265, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37202746

RESUMEN

BACKGROUND: The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown. RESULTS: Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution. The ratios of TIR1/AFBs to AUX/IAAs range from 4:2 in Physcomitrium patens to 6:29 in Arabidopsis thaliana and 3:16 in Fragaria vesca. Whole-genome duplication (WGD) and tandem duplication have contributed to the expansion of the AUX/IAA gene family, but numerous TIR1/AFB gene duplicates were lost after WGD. We further analyzed the expression profiles of TIR1/AFBs and AUX/IAAs in different tissue parts of Physcomitrium patens, Selaginella moellendorffii, Arabidopsis thaliana and Fragaria vesca, and found that TIR1/AFBs and AUX/IAAs were highly expressed in all tissues in P. patens, S. moellendorffii. In A. thaliana and F. vesca, TIR1/AFBs maintained the same expression pattern as the ancient plants with high expression in all tissue parts, while AUX/IAAs appeared tissue-specific expression. In F. vesca, 11 AUX/IAAs interacted with TIR1/AFBs with different interaction strengths, and the functional specificity of AUX/IAAs was related to their ability to bind TIR1/AFBs, thus promoting the development of specific higher plant organs. Verification of the interactions among TIR1/AFBs and AUX/IAAs in Marchantia polymorpha and F. vesca also showed that the regulation of AUX/IAA members by TIR1/AFBs became more refined over the course of plant evolution. CONCLUSIONS: Our results indicate that specific interactions and specific gene expression patterns both contributed to the functional diversification of TIR1/AFBs and AUX/IAAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Ácidos Indolacéticos/metabolismo , Morfogénesis/genética , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/genética
3.
Plant J ; 105(4): 1072-1082, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217085

RESUMEN

Eukaryotic genes can be classified into intronless (no introns), intron-poor (three or fewer introns per gene) or intron-rich. Early eukaryotic genes were mostly intron-rich, and their alternative splicing into multiple transcripts, giving rise to different proteins, might have played pivotal roles in adaptation and evolution. Interestingly, extant plant genomes contain many gene families with one or sometimes few sub-families with genes that are intron-poor or intronless, and it remains unknown when and how these intron-poor or intronless genes have originated and evolved, and what their possible functions are. In this study, we identified 33 such gene families that contained intronless and intron-poor sub-families. Intronless genes seemed to have first emerged in early land plant evolution, while intron-poor sub-families seemed first to have appeared in green algae. In contrast to intron-rich genes, intronless genes in intron-poor sub-families occurred later, and were subject to stronger functional constraints. Based on RNA-seq analyses in Arabidopsis and rice, intronless or intron-poor genes in AP2, EF-hand_7, bZIP, FAD_binding_4, STE_STE11, CAMK_CAMKL-CHK1 and C2 gene families were more likely to play a role in response to drought and salt stress, compared with intron-rich genes in the same gene families, whereas intronless genes in the B_lectin and S_locus_glycop gene family were more likely to participate in epigenetic processes and plant development. Understanding the origin and evolutionary trajectory, as well as the potential functions, of intronless and intron-poor sub-families provides further insight into plant genome evolution and the functional divergence of genes.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Genes de Plantas/genética , Intrones/genética , Deshidratación , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Filogenia , Estrés Salino , Selección Genética/genética
4.
BMC Plant Biol ; 22(1): 569, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36471247

RESUMEN

BACKGROUND: GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS: In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS: The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.


Asunto(s)
Fragaria , Malus , Pyrus , Rosaceae , Rosaceae/genética , Rosaceae/metabolismo , Filogenia , Genoma de Planta , Evolución Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Fragaria/genética , Fragaria/metabolismo , Malus/genética , Malus/metabolismo
5.
Mol Genet Genomics ; 297(1): 263-276, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35031863

RESUMEN

In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.


Asunto(s)
Resistencia a la Enfermedad/genética , Duplicación de Gen , Proteínas Repetidas Ricas en Leucina/genética , Prunus/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Especiación Genética , Genoma de Planta , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Prunus/clasificación , Especificidad de la Especie , Factores de Tiempo
6.
BMC Genomics ; 22(1): 112, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563208

RESUMEN

BACKGROUND: In plant genomes, high proportions of duplicate copies reveals that gene duplications play an important role in the evolutionary processes of plant species. A series of gene families under positive selection after recent duplication events in plant genomes indicated the evolution of duplicates driven by adaptive evolution. However, the genome-wide evolutionary features of young duplicate genes among closely related species are rarely reported. RESULTS: In this study, we conducted a systematic survey of young duplicate genes at genome-wide levels among six Rosaceae species, whose whole-genome sequencing data were successively released in recent years. A total of 35,936 gene families were detected among the six species, in which 60.25% were generated by young duplications. The 21,650 young duplicate gene families could be divided into two expansion types based on their duplication patterns, species-specific and lineage-specific expansions. Our results showed the species-specific expansions advantaging over the lineage-specific expansions. In the two types of expansions, high-frequency duplicate domains exhibited functional preference in response to environmental stresses. CONCLUSIONS: The functional preference of the young duplicate genes in both the expansion types showed that they were inclined to respond to abiotic or biotic stimuli. Moreover, young duplicate genes under positive selection in both species-specific and lineage-specific expansions suggested that they were generated to adapt to the environmental factors in Rosaceae species.


Asunto(s)
Rosaceae , Evolución Molecular , Duplicación de Gen , Genes Duplicados , Genoma de Planta , Humanos , Filogenia , Especificidad de la Especie
7.
BMC Plant Biol ; 21(1): 295, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174836

RESUMEN

BACKGROUND: Drought is a common phenomenon worldwide. It is also one of the main abiotic factors that affect the growth and quality of strawberry. The dehydration-responsive element binding protein (DREB) members that belong to the APETALA2/ethylene-responsive element binding protein (AP2/EREBP) superfamily are unique transcription factors in plants that play important roles in the abiotic stress response. RESULTS: Here, a total of 119 AP2/EREBP genes were identified in Fragaria vesca, and the AP2/EREBP superfamily was divided into AP2, RAV, ERF, DREB, and soloist subfamilies, containing 18, 7, 61, 32, and one member(s), respectively. The DREB subfamily was further divided into six subgroups (A-1 to A-6) based on phylogenetic analysis. Gene structure, conserved motifs, chromosomal location, and synteny analysis were conducted to comprehensively investigate the characteristics of FvDREBs. Furthermore, transcriptome analysis revealed distinctive expression patterns among the FvDREB genes in strawberry plants exposed to drought stress. The expression of FvDREB6 of the A-2 subgroup was down-regulated in old leaves and up-regulated in young leaves in response to drought. Furthermore, qRT-PCR analysis found that FvDREB8 from the A-2 subgroup had the highest expression level under drought stress. Together, analyses with the expression pattern, phylogenetic relationship, motif, and promoter suggest that FvDREB18 may play a critical role in the regulation of FvDREB1 and FvDREB2 expression. CONCLUSIONS: Our findings provide new insights into the characteristics and potential functions of FvDREBs. These FvDREB genes should be further studied as they appear to be excellent candidates for drought tolerance improvement of strawberry.


Asunto(s)
Fragaria/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Transcriptoma , Secuencia Conservada , Deshidratación , Fragaria/metabolismo , Fragaria/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/fisiología
8.
BMC Genomics ; 21(1): 635, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928117

RESUMEN

BACKGROUND: Protein kinases (PKs) play an important role in signaling cascades and are one of the largest and most conserved protein super families in plants. Despite their importance, the woodland strawberry (Fragaria vesca) kinome and expression patterns of PK genes remain to be characterized. RESULTS: Here, we report on the identification and classification of 954 Fragaria vesca PK genes, which were classified into nine groups and 124 gene families. These genes were distributed unevenly among the seven chromosomes, and the number of introns per gene varied from 0 to 47. Almost half of the putative PKs were predicted to localize to the nucleus and 24.6% were predicted to localize to the cell membrane. The expansion of the woodland strawberry PK gene family occurred via different duplication mechanisms and tandem duplicates occurred relatively late as compared to other duplication types. Moreover, we found that tandem and transposed duplicated PK gene pairs had undergone stronger diversifying selection and evolved relatively faster than WGD genes. The GO enrichment and transcriptome analysis implicates the involvement of strawberry PK genes in multiple biological processes and molecular functions in differential tissues, especially in pollens. Finally, 109 PKs, mostly the receptor-like kinases (RLKs), were found transcriptionally responsive to Botrytis cinerea infection. CONCLUSIONS: The findings of this research expand the understanding of the evolutionary dynamics of PK genes in plant species and provide a potential link between cell signaling pathways and pathogen attack.


Asunto(s)
Resistencia a la Enfermedad , Fragaria/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Transcriptoma , Botrytis/patogenicidad , Fragaria/crecimiento & desarrollo , Fragaria/metabolismo , Fragaria/microbiología , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Selección Genética
9.
BMC Plant Biol ; 20(1): 194, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381024

RESUMEN

BACKGROUND: The mitogen-activated protein kinases (MAPKs), as a part of the MAPKKK-MAPKK-MAPK cascade, play crucial roles in plant development as an intracellular signal transduction pathway to respond various environmental signals. However, few MAPKK have been functionally characterized in grapevine. RESULTS: In the study, five MAPKK (MKK) members were identified in grapevine (cultivar 'Pinot Noir'), cloned and designated as VvMKK1-VvMKK5. A phylogenetic analysis grouped them into four sub-families based on the similarity of their conserved motifs and gene structure to Arabidopsis MAPKK members. qRT-PCR results indicated that the expression of VvMKK1, VvMKK2, VvMKK4, and VvMKK5 were up-regulated in mature leaf and young blades, and roots, but exhibited low expression in leaf petioles. VvMKK2, VvMKK3, and VvMKK5 genes were differentially up-regulated when grapevine leaves were inoculated with spores of Erisyphe necator, or treated with salicylic acid (SA), ethylene (ETH), H2O2, or exposed to drought, indicating that these genes may be involved in a variety of signaling pathways. Over expression of VvMKK2 and VvMKK4 genes in transgenic Arabidopsis plants resulted in the production of seeds with a significantly higher germination and survival rate, and better seedling growth under stress conditions than wild-type plants. Overexpression of VvMKK2 in Arabidopsis improved salt and drought stress tolerance while overexpression of VvMKK4 only improved salt stress tolerance. CONCLUSIONS: Results of the present investigation provide a better understanding of the interaction and function of MAPKKK-MAPKK-MAPK genes at the transcriptional level in grapevine and led to the identification of candidate genes for drought and salt stress in grapes.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas de Plantas/genética , Vitis/enzimología , Vitis/genética , Arabidopsis/genética , Clonación Molecular , Genes de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico
10.
Plant Cell Rep ; 38(5): 587-596, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30712103

RESUMEN

KEY MESSAGE: Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a homologous gene of AREB/ABFs form Arabidopsis, was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Vitis/genética
11.
BMC Genomics ; 19(1): 128, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422035

RESUMEN

BACKGROUND: Plant disease resistance (R) genes are evolving rapidly and play a critical role in the innate immune system of plants. The nucleotide binding sites-leucine rich repeat (NBS-LRR) genes are one of the largest classes in plant R genes. Previous studies have focused on the NBS-LRR genes from one or several species of different genera, and the sequenced genomes of the genus Fragaria offer the opportunity to study the evolutionary processes of these R genes among the closely related species. RESULTS: In this study, 325, 155, 190, 187, and 133 NBS-LRRs were discovered from F. x ananassa, F. iinumae, F. nipponica, F. nubicola, and F. orientalis, respectively. Together with the 144 NBS-LRR genes from F. vesca, a total of 1134 NBS-LRRs containing 866 multi-genes comprised 184 gene families across the six Fragaria genomes. Extremely short branch lengths and shallow nodes were widely present in the phylogenetic tree constructed with all of the NBS-LRR genes of the six strawberry species. The identities of the orthologous genes were highly significantly greater than those of the paralogous genes, while the Ks ratios of the former were very significantly lower than those of the latter in all of the NBS-LRR gene families. In addition, the Ks and Ka/Ks values of the TIR-NBS-LRR genes (TNLs) were significantly greater than those of the non-TIR-NBS-LRR genes (non-TNLs). Furthermore, the expression patterns of the NBS-LRR genes revealed that the same gene expressed differently under different genetic backgrounds in response to pathogens. CONCLUSIONS: These results, combined with the shared hotspot regions of the duplicated NBS-LRRs on the chromosomes, indicated that the lineage-specific duplication of the NBS-LRR genes occurred before the divergence of the six Fragaria species. The Ks and Ka/Ks ratios suggested that the TNLs are more rapidly evolving and driven by stronger diversifying selective pressures than the non-TNLs.


Asunto(s)
Resistencia a la Enfermedad/genética , Fragaria/genética , Duplicación de Gen , Ligamiento Genético , Proteínas de Plantas/genética , Evolución Biológica , Mapeo Cromosómico , Biología Computacional/métodos , Bases de Datos Genéticas , Fragaria/clasificación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/etiología , Enfermedades de las Plantas/genética , Especificidad de la Especie , Transcriptoma
12.
BMC Genomics ; 19(1): 306, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703146

RESUMEN

BACKGROUND: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. RESULTS: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK, comprises SnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK's unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. CONCLUSIONS: This report identified a novel gene fusion and dated its precise fusion time in Metakinetoplastina protists. This potential fourth eukaryotic calcium signal conversion pathway complements our current knowledge that convergent evolution occurs in eukaryotic calcium signaling.


Asunto(s)
Evolución Biológica , Calcio/metabolismo , Biología Computacional , Eucariontes/genética , Fusión Génica , Familia de Multigenes , Plantas/genética , Animales , Señalización del Calcio , Regulación de la Expresión Génica , Filogenia
13.
BMC Plant Biol ; 18(1): 199, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30227850

RESUMEN

BACKGROUND: Crassulacean acid metabolism (CAM) plants use water 20-80% more efficiently by shifting stomata opening and primary CO2 uptake and fixation to the nighttime. Protein kinases (PKs) play pivotal roles in this biological process. However, few PKs have been functionally analyzed precisely due to their abundance and potential functional redundancy (caused by numerous gene duplications). RESULTS: In this study, we systematically identified a total of 758 predicted PK genes in the genome of a CAM plant, pineapple (Ananas comosus). The pineapple kinome was classified into 20 groups and 116 families based on the kinase domain sequences. The RLK was the largest group, containing 480 members, and over half of them were predicted to locate at the plasma membrane. Both segmental and tandem duplications make important contributions to the expansion of pineapple kinome based on the synteny analysis. Ka/Ks ratios showed all of the duplication events were under purifying selection. The global expression analysis revealed that pineapple PKs exhibit different tissue-specific and diurnal expression patterns. Forty PK genes in a cluster performed higher expression levels in green leaf tip than in white leaf base, and fourteen of them had strong differential expression patterns between the photosynthetic green leaf tip and the non-photosynthetic white leaf base tissues. CONCLUSIONS: Our findings provide insights into the evolution and biological function of pineapple PKs and a foundation for further functional analysis of PKs in CAM plants. The gene duplication, expression, and coexpression analysis helped us to rapidly identify the key candidates in pineapple kinome, which may play roles in the carbon fixation process in pineapple and help engineering CAM pathway into C3 crops for improved drought tolerance.


Asunto(s)
Ananas/enzimología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Empalme Alternativo , Ananas/genética , Ananas/crecimiento & desarrollo , Cromosomas de las Plantas , Ritmo Circadiano/genética , Duplicación de Gen , Genoma de Planta , Intrones , Filogenia , Proteínas de Plantas/metabolismo , Dominios Proteicos
14.
Genome ; 61(1): 49-57, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29084389

RESUMEN

VQ motif-containing proteins play crucial roles in plant growth, development, and stress responses. However, no information of VQ motif-containing proteins has been studied at the microevolutionary level in species of Fragaria. In this study, a total of 19, 21, 23, 23, 23, and 25 genes containing the VQ motif were identified from the genomes of F. nipponica, F. iinumae, F. orientalis, F. vesca, F. nubicola, and F. x ananassa, respectively. We classified the VQ genes into 15 clades with grapevine VQ genes, which indicated that at least 15 ancient VQ genes existed before the divergence of the six studied species of Fragaria. Phylogenetic analysis indicated that 28 gene duplication events have occurred in the evolutionary process of the six species of Fragaria. Structural analysis showed that most of the VQ genes have no introns and that VQ proteins in each clade have a similar motif composition. The majority of gene pairs had Ka/Ks ratios less than 1, which illustrated that most of the VQ genes underwent purifying selection in the six species of Fragaria. Four types of cis-elements in promoters of VQ genes were detected, which is an important basis for further studies about plant stress responses. Furthermore, the expression analysis of FvVQ genes indicated that these genes are expressed differentially in the examined organs and tissues. The identification of VQ genes and the analysis of VQ gene duplication and polyploidization events in the six species of Fragaria provide important information on the evolutionary fate of VQ genes during the divergence of the six species of Fragaria.


Asunto(s)
Evolución Molecular , Fragaria/genética , Familia de Multigenes , Proteínas de Plantas/genética , Exones , Fragaria/metabolismo , Expresión Génica , Intrones , Motivos de Nucleótidos , Filogenia , Poliploidía , Secuencias Reguladoras de Ácidos Nucleicos , Alineación de Secuencia
15.
Genome ; 61(9): 675-683, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30067072

RESUMEN

SQUAMOSA promoter-binding protein-like (SPL) is a class of plant-specific transcription factors that play critical roles in regulating plant growth and development. However, little systematic research on SPL genes has been conducted in strawberry. In this study, 14 SPL genes were identified in the genome of woodland strawberry (Fragaria vesca), one of the model plants of the family Rosaceae. Chromosome localization analysis indicated that the 14 FvSPL genes were unevenly distributed on six chromosomes. Phylogenetic analysis indicated that the FvSPL proteins could be clustered into six groups (G1 to G6). Genes with similar structure were classified into the same group, implying their functional redundancy. In addition, nine out of the 14 FvSPL genes, belonging to G1, G2, and G5, were found to be the putative targets of FvmiR156 genes. Expression analysis indicated FvSPL genes exhibited highly diverse expression patterns in the tissues and organs examined. The transcript levels of most FvmiR156-targeted FvSPL genes in fruit were lower than those non-miR156-targeted genes. In addition, the expression of the FvmiR156-targeted FvSPL genes decreased during fruit ripening, whereas the expression of FvmiR156 genes increased in fruit during this process. The results provide a foundation for future functional analysis of FvSPL genes in strawberry growth and development.


Asunto(s)
Fragaria/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Flores/genética , Flores/crecimiento & desarrollo , Fragaria/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
16.
Plant J ; 86(2): 175-85, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26959080

RESUMEN

Crassulacean acid metabolism (CAM) is a CO2 fixation pathway that maximizes water-use efficiency (WUE), compared with the C3/C4 CO2 pathway, which permits CAM plants to adapt to arid environments. The CAM pathway provides excellent opportunities to genetically design plants, especially bioenergy crops, with a high WUE and better photosynthetic performance than C3/C4 in arid environments. The information available on the origin and evolution of CAM is scant, however. Here, we analyzed transcriptomes from 13 orchid species and two existing orchid genomes, covering CAM and C3 plants, with an emphasis on comparing 13 gene families involved in the complete carbon fixation pathway. The dosage of the core photosynthesis-related genes plays no substantial role in the evolution of CAM in orchids; however, CAM may have evolved primarily by changes at the transcription level of key carbon fixation pathway genes. We proposed that in both dark and light, CO2 is primarily fixed and then released through two metabolic pathways via known genes, such as PPC1, PPDK and PPCK. This study reports a comprehensive comparison of carbon fixation pathway genes across different photosynthetic plants, and reveals the importance of the level of expression of key genes in the origin and evolution of CAM.


Asunto(s)
Ciclo del Carbono , Evolución Molecular , Genes de Plantas , Orchidaceae/metabolismo , Orchidaceae/clasificación , Orchidaceae/genética , Filogenia , Estomas de Plantas/metabolismo , Transcriptoma
17.
Plant Biotechnol J ; 15(2): 162-173, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27383431

RESUMEN

Cation/proton antiporter 1 (CPA1) genes encode cellular Na+ /H+ exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over-expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta-analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K+ , root K+ /Na+ , total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1-induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance.


Asunto(s)
Antiportadores/genética , Tolerancia a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/genética , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Antiportadores/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Protones , Plantas Tolerantes a la Sal/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
18.
Genome ; 59(10): 866-878, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27653246

RESUMEN

The ABA/water stress/ripening-induced (ASR) gene family exists universally in higher plants, and many ASR genes are up-regulated during periods of environmental stress and fruit ripening. Although a considerable amount of research has been performed investigating ASR gene response to abiotic stresses, relatively little is known about their roles in response to biotic stresses. In this report, we identified five ASR genes in apple (Malus × domestica) and explored their phylogenetic relationship, duplication events, and selective pressure. Five apple ASR genes (Md-ASR) were divided into two clades based on phylogenetic analysis. Species-specific duplication was detected in M. domestica ASR genes. Leaves of 'Golden delicious' and 'Starking' were infected with Alternaria alternata f. sp. mali, which causes apple blotch disease, and examined for the expression of the ASR genes in lesion areas during the first 72 h after inoculation. Md-ASR genes showed different expression patterns at different sampling times in 'Golden delicious' and 'Starking'. The activities of stress-related enzymes, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), and polyphenoloxidase (PPO), and the content of malondialdehyde (MDA) were also measured in different stages of disease development in two cultivars. The ASR gene expression patterns and theses physiological indexes for disease resistance suggested that Md-ASR genes are involved in biotic stress responses in apple.


Asunto(s)
Alternaria , Genes de Plantas , Estudio de Asociación del Genoma Completo , Malus/genética , Malus/microbiología , Familia de Multigenes , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Malus/clasificación , Malus/metabolismo , Filogenia , Análisis de Secuencia de ADN , Estrés Fisiológico/genética
19.
BMC Genomics ; 16: 77, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25759136

RESUMEN

BACKGROUND: Disease resistance (R) genes from different Rosaceae species have been identified by map-based cloning for resistance breeding. However, there are few reports describing the pattern of R-gene evolution in Rosaceae species because several Rosaceae genome sequences have only recently become available. RESULTS: Since most disease resistance genes encode NBS-LRR proteins, we performed a systematic genome-wide survey of NBS-LRR genes between five Rosaceae species, namely Fragaria vesca (strawberry), Malus × domestica (apple), Pyrus bretschneideri (pear), Prunus persica (peach) and Prunus mume (mei) which contained 144, 748, 469, 354 and 352 NBS-LRR genes, respectively. A high proportion of multi-genes and similar Ks peaks (Ks = 0.1- 0.2) of gene families in the four woody genomes were detected. A total of 385 species-specific duplicate clades were observed in the phylogenetic tree constructed using all 2067 NBS-LRR genes. High percentages of NBS-LRR genes derived from species-specific duplication were found among the five genomes (61.81% in strawberry, 66.04% in apple, 48.61% in pear, 37.01% in peach and 40.05% in mei). Furthermore, the Ks and Ka/Ks values of TIR-NBS-LRR genes (TNLs) were significantly greater than those of non-TIR-NBS-LRR genes (non-TNLs), and most of the NBS-LRRs had Ka/Ks ratios less than 1, suggesting that they were evolving under a subfunctionalization model driven by purifying selection. CONCLUSIONS: Our results indicate that recent duplications played an important role in the evolution of NBS-LRR genes in the four woody perennial Rosaceae species. Based on the phylogenetic tree produced, it could be inferred that species-specific duplication has mainly contributed to the expansion of NBS-LRR genes in the five Rosaceae species. In addition, the Ks and Ka/Ks ratios suggest that the rapidly evolved TNLs have different evolutionary patterns to adapt to different pathogens compared with non-TNL resistant genes.


Asunto(s)
Genoma de Planta , Proteínas de Plantas/genética , Rosaceae/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Frutas/genética , Frutas/metabolismo , Duplicación de Gen , Filogenia , Proteínas de Plantas/clasificación , Rosaceae/metabolismo , Especificidad de la Especie
20.
J Exp Bot ; 66(7): 1919-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25614662

RESUMEN

The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean.


Asunto(s)
Genoma de Planta/genética , Glycine max/genética , Proteínas Quinasas/clasificación , Secuencia de Aminoácidos , Mapeo Cromosómico , Expresión Génica , Familia de Multigenes , Especificidad de Órganos , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Duplicaciones Segmentarias en el Genoma , Glycine max/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA