Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am Nat ; 199(4): 523-550, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324378

RESUMEN

AbstractThe distributions of marine ectotherms are governed by physiological sensitivities to long-term trends in seawater temperature and dissolved oxygen. Short-term variability in these parameters has the potential to facilitate rapid range expansions, and the resulting ecological and socioeconomic consequences may portend those of future marine communities. Here, we combine physiological experiments with ecological and demographic surveys to assess the causes and consequences of sudden but temporary poleward range expansions of a marine ectotherm with considerable life history plasticity (California market squid, Doryteuthis opalescens). We show that sequential factors related to resource accessibility in the core range-the buildup of large populations as a result of competitive release and climate-associated temperature increase and oxygen loss that constrain aerobic activity-may drive these expansions. We also reveal that poleward range expansion alters the body size-and therefore trophic role-of invading populations, with potential negative implications for socioeconomically valuable resident species. To help forecast rapid range expansions of marine ectotherms, we advocate that research efforts focus on factors impacting resource accessibility in core ranges. Determining how environmental conditions in receiving ecosystems affect body size and how body size is related to trophic role will help refine estimates of the impacts of future marine communities.


Asunto(s)
Ecosistema , Oxígeno , Animales , Demografía , Femenino , Embarazo , Agua de Mar , Temperatura
2.
J Exp Biol ; 225(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234874

RESUMEN

Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.


Asunto(s)
Motivación , Ballenas , Animales , Tamaño Corporal , Natación
3.
Mar Mamm Sci ; 35(4): 1556-1578, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32863564

RESUMEN

The rise of inexpensive, user-friendly cameras and editing software promises to revolutionize data collection with minimal disturbance to marine mammals. Video sequences recorded by aerial drones and GoPro cameras provided close-up views and unique perspectives of humpback whales engulfing juvenile salmon at or just below the water surface in Southeast Alaska and Prince William Sound. Although humpback feeding is famous for its flexibility, several stereotyped events were noted in the 47 lunges we analyzed. Engulfment was rapid (mean 2.07 s), and the entrance through which the tongue inverts into the ventral pouch was seen as water rushes in. Cranial elevation was a major contributor to gape, and pouch contraction sometimes began before full gape closure, with reverberating waves indicating rebounding flow of water within the expanded pouch. Expulsion of filtered water began with a small splash at the anterior of the mouth, followed by sustained excurrent flow in the mouth's central or posterior regions. Apart from a splash of rebounding water, water within the mouth was surprisingly turbulence-free during engulfment, but submersion of the whale's head created visible surface whirlpools and vortices which may aggregate prey for subsequent engulfment.

4.
Rapid Commun Mass Spectrom ; 32(16): 1425-1438, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29777550

RESUMEN

RATIONALE: Stable isotope analysis integrates diet information over a time period specific to the type of tissue sampled. For metabolically active skin of free-ranging cetaceans, cells are generated at the basal layer of the skin and migrate outward until they eventually slough off, suggesting potential for a dietary time series. METHODS: Skin samples from cetaceans were analyzed using continuous-flow elemental analyzer isotope ratio mass spectrometry. We used ANOVAs to compare the variability of δ13 C and δ15 N values within and among layers and columns ("cores") of the skin of a fin, humpback, and sperm whale. We then used mixed-effects models to analyze isotopic variability among layers of 28 sperm whale skin samples, over the course of a season and among years. RESULTS: We found layer to be a significant predictor of δ13 C values in the sperm whale's skin, and δ15 N values in the humpback whale's skin. There was no evidence for significant differences in δ15 N or δ13 C values among cores for any species. Mixed-effects models selected layer and day of the year as significant predictors of δ13 C and δ15 N values in sperm whale skin across individuals sampled during the summer months in the Gulf of Alaska. CONCLUSIONS: These results suggest that skin samples from cetaceans may be subsampled to reflect diet during a narrower time period; specifically different layers of skin may contain a dietary time series. This underscores the importance of selecting an appropriate portion of skin to analyze based on the species and objectives of the study.

5.
Animals (Basel) ; 12(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203235

RESUMEN

Stranded large whales represent an opportunity to learn about the anatomy and health of these cryptic free-ranging animals. However, where time and access is frequently limited, law enforcement and management priorities often take precedence over research, outreach, and educational uses. On 14 March 2021, a dead female adult humpback whale was reported stranded on an uninhabited island 15 miles west of Sitka, Alaska. The whale was three-dimensionally scanned using light detection and ranging (LiDAR) and photogrammetry before, during, and at multiple time points after a necropsy, including full decomposition 17 days later (NOAA Fisheries permit 18786-01). These scans were organized and displayed on the site Sketchfab with annotations and made publically available as a "4D virtual necropsy" (the fourth dimension is time). After one month, our user survey indicated widespread interest in the platform by both the local community and worldwide by stranding professionals, researchers, and educators. We are unaware of another 3D scan involving a large whale with soft tissue for teaching, research, or public display, despite the ease of 3D scanning with current technologies and the wide-ranging applications.

6.
R Soc Open Sci ; 4(7): 170180, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28791145

RESUMEN

Humpback whales are remarkable for the behavioural plasticity of their feeding tactics and the diversity of their diets. Within the last decade at hatchery release sites in Southeast Alaska, humpback whales have begun exploiting juvenile salmon, a previously undocumented prey. The anthropogenic source of these salmon and their important contribution to local fisheries makes the emergence of humpback whale predation a concern for the Southeast Alaska economy. Here, we describe the frequency of observing humpback whales, examine the role of temporal and spatial variables affecting the probability of sighting humpback whales and describe prey capture behaviours at five hatchery release sites. We coordinated twice-daily 15 min observations during the spring release seasons 2010-2015. Using logistic regression, we determined that the probability of occurrence of humpback whales increased after releases began and decreased after releases concluded. The probability of whale occurrence varied among release sites but did not increase significantly over the 6 year study period. Whales were reported to be feeding on juvenile chum, Chinook and coho salmon, with photographic and video records of whales feeding on coho salmon. The ability to adapt to new prey sources may be key to sustaining their population in a changing ocean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA