Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem Biophys Res Commun ; 478(3): 1080-6, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27524234

RESUMEN

LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194-306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1-306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase.


Asunto(s)
Glycine max/crecimiento & desarrollo , Glycine max/efectos de la radiación , Luz , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Dedos de Zinc , Arabidopsis/genética , ADN Complementario/aislamiento & purificación , Genes Reporteros , Prueba de Complementación Genética , Mutación/genética , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Glycine max/metabolismo , Fracciones Subcelulares/metabolismo , Nicotiana/genética , Transcripción Genética , Activación Transcripcional/genética
2.
Plant Physiol ; 169(1): 780-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26198257

RESUMEN

The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ósmosis/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Manitol/farmacología , Modelos Biológicos , Mutagénesis Insercional/efectos de los fármacos , Mutación/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
3.
Biochim Biophys Acta ; 1810(12): 1317-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21756975

RESUMEN

BACKGROUND: The C2 domain is a Ca(2+)/phospholipid-binding motif found in many proteins involved in signal transduction or membrane trafficking. OsERG3 is a homolog of OsERG1, a gene encoding a small C2-domain protein in rice. METHODS: OsERG3 Ca(2+)-binding and phospholipid-binding assays were carried out using (3)H-labeled phospholipid liposomes and a (45)Ca(2+) overlay assay, respectively. Cytosolic expression of OsERG3 was investigated by Western blot analysis and the OsERG3::smGFP transient expression assay. RESULTS: OsERG3 transcript levels were greatly enhanced by treatment with a fungal elicitor and Ca(2+)-ionophore. OsERG3 protein proved unable to interact with phospholipids regardless of the presence or absence of Ca(2+) ions. Nonetheless, OsERG3 displayed calcium-binding activity in an in vitro(45)Ca(2+)-binding assay, a property not observed with OsERG1. The cytosolic location of OsERG3 was not altered by the presence of fungal elicitor or Ca(2+)-ionophore. CONCLUSIONS: OsERG3 encodes a small C2-domain protein consisting of a single C2 domain. OsERG3 binds Ca(2+) ions but not phospholipids. OsERG3 is a cytosolic soluble protein. The OsERG3 gene may play a role in signaling pathway involving Ca(2+) ions. GENERAL SIGNIFICANCE: The data demonstrate that OsERG3 is an unusual small C2-domain protein containing a Ca(2+)-binding module but lacking phospholipid-binding properties.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Oryza/metabolismo , Fosfolípidos/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Transducción de Señal
4.
Mycologia ; 104(2): 362-70, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22223171

RESUMEN

Lichens produce unique polyketide secondary metabolites including depsides, depsidones, dibenzofurans and depsones. The biosynthesis of these compounds is governed by polyketide synthase (PKS), but the mechanism via which they are produced has remained unclear until now. We reported the 6-methylsalicylic acid synthase (6-MSAS) type of PKS gene, which is a member of the fungal-reducing PKSs. A cultured mycobiont of Cladonia metacorallifera was employed in the isolation and characterization of a polyketide synthase gene (CmPKS1). The complete sequence information for CmPKS1 was acquired via the screening of a Fosmid genomic library with a 456 bp fragment corresponding to part of the acyl transferase (AT) domain as a probe. CmPKS1 contains ß-ketoacyl synthase (KS), AT, dehydratase (DH), ketoreductase (KR) and phosphopantetheine attachment site (PP) domains.: The domain organization of CmPKS1 (KS-AT-DH-KR-PP) is a typical 6-MSAS-type PKS, and the results of phylogenetic analysis showed that CmPKS1 grouped with other fungal-reducing PKSs. Quantitative real time PCR analyses showed that CmPKS1 was expressed preferentially in the early growth stage of the axenically cultured mycobiont. Furthermore CmPKS1 expression was found to be dependent on the carbon sources and concentrations in the medium.


Asunto(s)
Ascomicetos/enzimología , Líquenes/enzimología , Sintasas Poliquetidas/genética , Policétidos/metabolismo , Aciltransferasas/genética , Secuencia de Aminoácidos , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Secuencia de Bases , Southern Blotting , Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica , Biblioteca Genómica , Líquenes/clasificación , Líquenes/genética , Líquenes/aislamiento & purificación , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oxidación-Reducción , Filogenia , Sintasas Poliquetidas/metabolismo , Estructura Terciaria de Proteína , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
5.
Biochem Biophys Res Commun ; 387(2): 365-70, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19607808

RESUMEN

Mitogen-activated protein kinases (MAPKs) play important roles in responses to various environmental stresses. In a previous study, we demonstrated that OsBWMK1, which localizes in the nucleus, mediates PR gene expression by activating the OsEREBP1 transcription factor, and that the constitutive expression of OsBWMK1 also enhances resistance against pathogen infections [Y.H. Cheong, B.C. Moon, J.K. Kim, C.Y. Kim, M.C. Kim, I.H. Kim, C.Y. Park, J.C. Kim, B.O. Park, S.C. Koo, H.W. Yoon, W.S. Chung, C.O. Lim, S.Y. Lee, M.J. Cho, BWMK1, rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor, Plant Physiol. 132 (2003) 1961--1972]. Here, we report that OsBWMK1 phosphorylates OsWRKY33, which binds to the W-box element (TTGACCA) in several PR gene promoters, thereby enhancing DNA-binding activity of the factor to its in vitro cognate binding site. Transient coexpression of OsBWMK1 and OsWRKY33 in Arabidopsis protoplasts elevates SA-dependent expression of the GUS-reporter gene driven by the W-box element and the PR1 promoter. Furthermore, the levels of SA and H(2)O(2) are elevated in 35S-OsBWMK1 transgenic plants that show HR-like cell death. Altogether, OsBWMK1 may mediate SA-dependent defense responses by activating the WRKY transcription factor in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Peróxido de Hidrógeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Protoplastos/metabolismo , Activación Transcripcional
6.
Mycobiology ; 42(1): 34-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24808732

RESUMEN

Usnea longissima has a long history of use as a traditional medicine. Several bioactive compounds, primarily belonging to the polyketide family, have been isolated from U. longissima. However, the genes for the biosynthesis of these compounds are yet to be identified. In the present study, three different types of non-reducing polyketide synthases (UlPKS2, UlPKS4, and UlPKS6) were identified from a cultured lichen-forming fungus of U. longissima. Phylogenetic analysis of product template domains showed that UlPKS2 and UlPKS4 belong to group IV, which includes the non-reducing polyketide synthases with an methyltransferase (MeT) domain that are involved in methylorcinol-based compound synthesis; UlPKS6 was found to belong to group I, which includes the non-reducing polyketide synthases that synthesize single aromatic ring polyketides, such as orsellinic acid. Reverse transcriptase-PCR analysis demonstrated that UlPKS2 and UlPKS4 were upregulated by sucrose; UlPKS6 was downregulated by asparagine, glycine, and alanine.

7.
Mol Cells ; 35(5): 381-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23456295

RESUMEN

We previously reported that OsERG1 and OsERG3 encode rice small C2-domain proteins with different biochemical properties in Ca(2+)- and phospholipid-binding assays. Os-ERG1 exhibited Ca(2+)-dependent phospholipid binding, which was not observed with OsERG3. In the present study, we show that both OsERG1 and OsERG3 proteins exhibit oligomerization properties as determined by native polyacrylamide gel electrophoresis (PAGE) and glutaraldehyde cross-linking experiments. Furthermore, in vitro phosphorylation assays reveal the phosphorylation of OsERG1 and OsERG3 by a rice calcium-dependent protein kinase, OsCDPK5. Our mutation analysis on putative serine phosphorylation sites shows that the first serine (Ser) at position 41 of OsERG1 may be an essential residue for phosphorylation by OsCDPK5. Mutation of Ser41 to alanine (OsERG1S41A) and aspartate (OsERG1S41D) abolishes the ability of OsERG1 to bind phospholipids regardless of the presence or absence of Ca(2+) ions. In addition, unlike the OsERG1 wild-type form, the mutant OsERG1 (S41A)::smGFP construct lost the ability to translocate from the cytosol to the plasma membrane in response to calcium ions or fungal elicitor. These results indicate that Ser41 may be essential for the function of OsERG1.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Alanina/genética , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Datos de Secuencia Molecular , Mutación , Oryza/enzimología , Fosfolípidos/metabolismo , Fosforilación , Proteínas de Plantas/química , Serina/genética
8.
PLoS One ; 8(12): e83896, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386304

RESUMEN

Transformation-mediated mutagenesis in both targeted and random manners has been widely applied to decipher gene function in diverse fungi. However, a transformation system has not yet been established for lichen fungi, severely limiting our ability to study their biology and mechanism underpinning symbiosis via gene manipulation. Here, we report the first successful transformation of the lichen fungus, Umbilicaria muehlenbergii, via the use of Agrobacterium tumefaciens. We generated a total of 918 transformants employing a binary vector that carries the hygromycin B phosphotransferase gene as a selection marker and the enhanced green fluorescent protein gene for labeling transformants. Randomly selected transformants appeared mitotically stable, based on their maintenance of hygromycin B resistance after five generations of growth without selection. Genomic Southern blot showed that 88% of 784 transformants contained a single T-DNA insert in their genome. A number of putative mutants affected in colony color, size, and/or morphology were found among these transformants, supporting the utility of Agrobacterium tumefaciens-mediated transformation (ATMT) for random insertional mutagenesis of U. muehlenbergii. This ATMT approach potentially offers a systematic gene functional study with genome sequences of U. muehlenbergii that is currently underway.


Asunto(s)
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Ingeniería Genética/métodos , Transformación Genética , Ascomicetos/aislamiento & purificación , ADN Bacteriano/genética , Genes Fúngicos/genética , Proteínas Fluorescentes Verdes/genética , Mutación , Fenotipo
9.
Mol Cells ; 34(5): 463-71, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23124383

RESUMEN

Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H(2)O(2), with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Nicotiana/microbiología , Óxido Nítrico Sintasa/genética , Pseudomonas/fisiología , Animales , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/metabolismo , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Pseudomonas/genética , Ratas , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
10.
J Microbiol ; 49(3): 473-80, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21717335

RESUMEN

The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with ß-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.


Asunto(s)
Líquenes/microbiología , Sintasas Poliquetidas/aislamiento & purificación , Sintasas Poliquetidas/metabolismo , Usnea/enzimología , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Usnea/clasificación
11.
Mol Cells ; 29(2): 159-65, 2010 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-20077023

RESUMEN

Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of CBL-interacting protein kinases (CIPKs). In this study, we report the role of Arabidopsis CBL5 gene in high salt or drought tolerance. CBL5 gene is expressed significantly in green tissues, but not in roots. CBL5 was not induced by abiotic stress conditions such as high salt, drought or low temperature. To determine whether the CBL5 gene plays a role in stress response pathways, we ectopically expressed the CBL5 protein in transgenic Arabidopsis plants (35S-CBL5) and examined plant responses to abiotic stresses. CBL5-overexpressing plants displayed enhanced tolerance to high salt or drought stress. CBL5 overexpression also rendered plants more resistant to high salt or hyperosmotic stress during early development (i.e., seed germination) but did not alter their response to abiscisic acid (ABA). Furthermore, overexpression of CBL5 alters the gene expression of stress gene markers, such as RD29A, RD29B and Kin1 etc. These results suggest that CBL5 may function as a positive regulator of salt or drought responses in plants.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Sequías , Ósmosis , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomarcadores/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Manitol/farmacología , Ósmosis/efectos de los fármacos , Plantas Modificadas Genéticamente , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
12.
Mol Cells ; 27(4): 467-73, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19390828

RESUMEN

Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/genética , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Empalme Alternativo , Secuencia de Bases , Western Blotting , Regulación de la Expresión Génica , Variación Genética , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Proteínas de Plantas/biosíntesis , Regiones Promotoras Genéticas , Isoformas de Proteínas
13.
Mol Plant ; 1(2): 238-48, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19825536

RESUMEN

Calcium plays a vital role as a second messenger in many signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in calcium signaling by interacting with their interacting protein kinases (CIPKs). In our previous study, we have reported a role for one of the CBLs (CBL9) and one of the CIPKs (CIPK3) in ABA signaling. Here, we have shown that CBL9 and CIPK3 physically and functionally interact with each other in regulating the ABA responses. The CBL9 and CIPK3 proteins interacted with each other in the yeast two-hybrid system and when expressed in plant cells. The double mutant cbl9cipk3 showed the similar hypersensitive response to ABA as observed in single mutants (cbl9 or cipk3). The constitutively active form of CIPK3 genetically complemented the cbl9 mutant, indicating that CIPK3 function downstream of CBL9. Based on these findings, we conclude that CBL9 and CIPK3 act together in the same pathway for regulating ABA responses.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al Calcio/metabolismo , Germinación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/fisiología , Transducción de Señal/fisiología , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Cartilla de ADN , Sequías , Homeostasis , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente/genética , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN de Planta/genética
14.
Cell Res ; 17(5): 411-21, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17486125

RESUMEN

Potassium is one of the major macro-nutrients essential for a number of cellular processes in plants. Low potassium level in the soil represents a limiting factor for crop production. Recent studies have identified potassium transporters that are involved in potassium acquisition, and some of them are critical for potassium nutrition under low potassium conditions. However, little is understood on the molecular components involved in low potassium signaling and responses. We report here the identification of a calcineurin B-like protein-interacting protein kinase (CIPK9) as a critical regulator of low potassium response in Arabidopsis. The CIPK9 gene was responsive to abiotic stress conditions, and its transcript was inducible in both roots and shoots by potassium deprivation. Disruption of CIPK9 function rendered the mutant plants hypersensitive to low potassium media. Further analysis indicated that K(+) uptake and content were not affected in the mutant plants, implying CIPK9 in the regulation of potassium utilization or sensing processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Potasio/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/fisiología , Proteínas de Arabidopsis/fisiología , Señalización del Calcio , Frío , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Plantas Modificadas Genéticamente , Potasio/farmacología , Proteínas Serina-Treonina Quinasas , ARN Mensajero/metabolismo
15.
Plant J ; 52(2): 223-39, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17922773

RESUMEN

Calcium signalling involves sensor proteins that decode temporal and spatial changes in cellular Ca2+ concentration. Calcineurin B-like proteins (CBLs) represent a unique family of plant calcium sensors that relay signals by interacting with a family of protein kinases, designated as CBL-interacting protein kinases (CIPKs). In a reverse genetic screen for altered drought tolerance, we identified a loss-of-function allele of CIPK23 as exhibiting a drought-tolerant phenotype. In the cipk23 mutant, reduced transpirational water loss from leaves coincides with enhanced ABA sensitivity of guard cells during opening as well as closing reactions, without noticeable alterations in ABA content in the plant. We identified the calcium sensors CBL1 and CBL9 as CIPK23-interacting proteins that targeted CIPK23 to the plasma membrane in vivo. Expression analysis of the CIPK23, CBL1 and CBL9 genes suggested that they may function together in diverse tissues, including guard cells and root hairs. In addition, expression of the CIPK23 gene was induced by low-potassium conditions, implicating a function of this gene product in potassium nutrition. Indeed, cipk23 mutants displayed severe growth impairment on media with low concentrations of potassium. This phenotype correlates with a reduced efficiency of K+ uptake into the roots. In support of the conclusion that CBL1 and CBL9 interact with and synergistically serve as upstream regulators of CIPK23, the cbl1 cbl9 double mutant, but not the cbl1 or cbl9 single mutants, exhibit altered phenotypes for stomatal responses and low-potassium sensitivity. Together with the recent identification of the potassium channel AKT1 as a target of CIPK23, these results imply that plasma membrane-localized CBL1- and CBL9-CIPK23 complexes simultaneously regulate K+ transport processes in roots and in stomatal guard cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Transpiración de Plantas/fisiología , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Serina-Treonina Quinasas/genética , Agua/metabolismo
16.
Plant J ; 52(3): 473-84, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17825054

RESUMEN

Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). We report here that the CBL protein CBL10 functions as a crucial regulator of salt tolerance in Arabidopsis. Cbl10 mutant plants exhibited significant growth defects and showed hypersensitive cell death in leaf tissues under high-salt conditions. Interestingly, the Na(+) content of the cbl10 mutant, unlike other salt-sensitive mutants identified thus far, was significantly lower than in the wild type under either normal or high-salt conditions, suggesting that CBL10 mediates a novel Ca(2+)-signaling pathway for salt tolerance. Indeed, the CBL10 protein physically interacts with the salt-tolerance factor CIPK24 (SOS2), and the CBL10-CIPK24 (SOS2) complex is associated with the vacuolar compartments that are responsible for salt storage and detoxification in plant cells. These findings suggest that CBL10 and CIPK24 (SOS2) constitute a novel salt-tolerance pathway that regulates the sequestration/compartmentalization of Na(+) in plant cells. Because CIPK24 (SOS2) also interacts with CBL4 (SOS3) and regulates salt export across the plasma membrane, our study identifies CIPK24 (SOS2) as a multi-functional protein kinase that regulates different aspects of salt tolerance by interacting with distinct CBL calcium sensors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Sensoras del Calcio Intracelular/metabolismo , Sodio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Homeostasis , Proteínas Sensoras del Calcio Intracelular/genética , Membranas Intracelulares/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Vacuolas/metabolismo
17.
Proc Natl Acad Sci U S A ; 104(40): 15959-64, 2007 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17898163

RESUMEN

Potassium (K(+)) is an essential nutrient for plant growth and development. Plants often adapt to low K(+) conditions by increasing their K(+) uptake capability. Recent studies have led to the identification of a calcium signaling pathway that enables plants to act in this capacity. Calcium is linked to two calcineurin B-like calcium sensors (CBLs) and a target kinase (CBL-interacting protein kinase 23 or CIPK23) that, in turn, appears to phosphorylate and activate the potassium channel, Arabidopsis K(+) transporter 1 (AKT1), responsible for K(+) uptake in roots. Here, we report evidence that this regulatory mechanism is more elaborate than earlier envisaged. The recently described pathway is part of an extensive network whereby several CBLs interact with multiple CIPKs in the activation of the potassium channel, AKT1. The physical interactions among the CBL, CIPK, and AKT1 components provide a mechanism for specifying the members of the CBL and CIPK families functional in AKT1 regulation. The interaction between the CIPKs and AKT1 was found to involve the kinase domain of the CIPK component and the ankyrin repeat domain of the channel. Furthermore, we identified a 2C-type protein phosphatase that physically interacts and inactivates the AKT1 channel. These findings provide evidence that the calcium-sensitive CBL and CIPK families together with 2C-type protein phosphatases form a protein phoshporylation/dephosphorylation network that regulates the AKT1 channel for K(+) transport in plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Canales de Potasio/fisiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Biochem Biophys Res Commun ; 360(1): 188-93, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17586462

RESUMEN

In eukaryotes, mitogen-activated protein kinases (MAPKs) play important roles in various developmental processes and in environmental stress responses. Here, we show that alternative splicing of the OsBWMK1, a member of the rice MAPK family, generates three transcript variants, OsBWMK1L, OsBWMK1M, and OsBWMK1S. The OsBWMK1L transcript variant was highly and constitutively expressed in all rice tissues tested and its expression was not altered by various stress conditions, whereas OsBWMK1M and OsBWMK1S were normally expressed at low levels but were induced by various stresses. A transient expression assay demonstrated that OsBWMK1L::GFP and OsBWMK1M::GFP were predominantly localized in the cytoplasm, whereas most OsBWMK1S::GFP was localized in the nucleus. Moreover, treatment with defense signaling related molecules, such as H(2)O(2) and SA, induced translocation of OsBWMK1 isoforms from the cytoplasm to the nucleus. Thus, our results suggest that alternative splicing of OsBWMK1 generates three different transcript variants that produce proteins with different subcellular localizations.


Asunto(s)
Empalme Alternativo/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fracciones Subcelulares/metabolismo , Transcripción Genética/genética , Secuencia de Bases , Variación Genética/genética , Datos de Secuencia Molecular , Estrés Oxidativo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
Proc Natl Acad Sci U S A ; 103(33): 12625-30, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16895985

RESUMEN

Nutrient sensing is critical for plant adaptation to the environment. Because of extensive farming and erosion, low content of mineral nutrients such as potassium (K(+)) in soils becomes a limiting factor for plant growth. In response to low-K conditions, plants enhance their capability of K(+) uptake through an unknown signaling mechanism. Here we report the identification of a Ca(2+)-dependent pathway for low-K response in Arabidopsis. We are not aware of any other example of a molecular pathway for a nutrient response in plants. Earlier genetic analyses revealed three genes encoding two Ca(2+) sensors (CBL1 and CBL9) and their target protein kinase (CIPK23) to be critical for plant growth on low-K media and for stomatal regulation, indicating that these calcium signaling components participate in the low-K response and turgor regulation. In this study, we show that the protein kinase CIPK23 interacted with, and phosphorylated, a voltage-gated inward K(+) channel (AKT1) required for K(+) acquisition in Arabidopsis. In the Xenopus oocyte system, our studies showed that interacting calcium sensors (CBL1 and CBL9) together with target kinase CIPK23, but not either component alone, activated the AKT1 channel in a Ca(2+)-dependent manner, connecting the Ca(2+) signal to enhanced K(+) uptake through activation of a K(+) channel. Disruption of both CBL1 and CBL9 or CIPK23 gene in Arabidopsis reduced the AKT1 activity in the mutant roots, confirming that the Ca(2+)-CBL-CIPK pathway functions to orchestrate transporting activities in planta according to external K(+) availability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Técnicas del Sistema de Dos Híbridos , Xenopus laevis
20.
Plant J ; 48(6): 857-72, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17092313

RESUMEN

Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Presión Osmótica , Proteínas Serina-Treonina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA