Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Environ Sci (China) ; 127: 336-348, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522066

RESUMEN

Benzo[a]pyrene (BaP), a ubiquitous pollutant, raises environmental health concerns due to induction of bone toxicity in the unexposed offspring. Exposure of F0 ancestor medaka (Oryzias latipes) to 1 µg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring. To reveal the inherited modifications, osteoblast (OB) abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed. Histomorphometric analysis showed a reduction in OB abundance. Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling (frzb/ola-miR-1-3p, sfrp5/ola-miR-96-5p/miR-455-5p) and bone morphogenetic protein (Bmp) signaling (bmp3/ola-miR-96-5p/miR-181b-5p/miR-199a-5p/miR-205-5p/miR-455-5p). Both pathways are major indicators of impaired bone formation, while the altered Rank signaling in osteoclasts (c-fos/miR-205-5p) suggests a potentially augmented bone resorption. Interestingly, a typical BaP-responsive pathway, the Nrf2-mediated oxidative stress response (gst/ola-miR-181b-5p/miR-199a-5p/miR-205), was also affected. Moreover, mRNA levels of epigenetic modification enzymes (e.g., hdac6, hdac7, kdm5b) were found dysregulated. The findings indicated that epigenetic factors (e.g., miRNAs, histone modifications) may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies. The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.


Asunto(s)
MicroARNs , Oryzias , Contaminantes Químicos del Agua , Animales , Masculino , Oryzias/fisiología , Benzo(a)pireno/toxicidad , Benzo(a)pireno/análisis , Benzo(a)pireno/metabolismo , Transcriptoma , Contaminantes Químicos del Agua/análisis , ARN Mensajero , MicroARNs/metabolismo
2.
PLoS Genet ; 13(12): e1007123, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29267279

RESUMEN

The heavily methylated vertebrate genomes are punctuated by stretches of poorly methylated DNA sequences that usually mark gene regulatory regions. It is known that the methylation state of these regions confers transcriptional control over their associated genes. Given its governance on the transcriptome, cellular functions and identity, genome-wide DNA methylation pattern is tightly regulated and evidently predefined. However, how is the methylation pattern determined in vivo remains enigmatic. Based on in silico and in vitro evidence, recent studies proposed that the regional hypomethylated state is primarily determined by local DNA sequence, e.g., high CpG density and presence of specific transcription factor binding sites. Nonetheless, the dependency of DNA methylation on nucleotide sequence has not been carefully validated in vertebrates in vivo. Herein, with the use of medaka (Oryzias latipes) as a model, the sequence dependency of DNA methylation was intensively tested in vivo. Our statistical modeling confirmed the strong statistical association between nucleotide sequence pattern and methylation state in the medaka genome. However, by manipulating the methylation state of a number of genomic sequences and reintegrating them into medaka embryos, we demonstrated that artificially conferred DNA methylation states were predominantly and robustly maintained in vivo, regardless of their sequences and endogenous states. This feature was also observed in the medaka transgene that had passed across generations. Thus, despite the observed statistical association, nucleotide sequence was unable to autonomously determine its own methylation state in medaka in vivo. Our results apparently argue against the notion of the governance on the DNA methylation by nucleotide sequence, but instead suggest the involvement of other epigenetic factors in defining and maintaining the DNA methylation landscape. Further investigation in other vertebrate models in vivo will be needed for the generalization of our observations made in medaka.


Asunto(s)
Metilación de ADN , Oryzias/genética , Animales , Secuencia de Bases , Islas de CpG , ADN/genética , Epigénesis Genética , Epigenómica/métodos , Evolución Molecular , Edición Génica , Regulación de la Expresión Génica , Genoma , Oryzias/metabolismo , Regiones Promotoras Genéticas , Transcriptoma
3.
Zygote ; 28(1): 9-23, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31590697

RESUMEN

Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , ARN Helicasas DEAD-box/metabolismo , Células Germinativas/citología , Oocitos/citología , Oogénesis , Oryzias/crecimiento & desarrollo , Espermatocitos/citología , Espermatogénesis , Animales , Núcleo Celular , Gránulos Citoplasmáticos/ultraestructura , Femenino , Proteínas de Peces/metabolismo , Células Germinativas/metabolismo , Células Germinativas/ultraestructura , Masculino , Oocitos/metabolismo , Espermatocitos/metabolismo
4.
Mar Pollut Bull ; 116(1-2): 454-461, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28132731

RESUMEN

Mangrove plantation is widely applied to re-establish the plant community in degraded mangroves, but its effectiveness to restore the ecological functions of macrobenthic community remains poorly known, especially when pollution may overwhelm its potential positive effect. Here, we tested the effect of mangrove plantation on the ecological functions of macrobenthic community in a polluted mangrove by analyzing biological traits of macrobenthos and calculating functional diversity. Mangrove plantation was shown to enhance the functional diversity and restore the ecological functions of macrobenthic community, depending on seasonality. Given the polluted sediment, however, typical traits of opportunistic species (e.g. small and short-lived) prevailed in all habitats and sampling times. We conclude that mangrove plantation can help diversify the ecological functions of macrobenthic community, but its effectiveness is likely reduced by pollution. From the management perspective, therefore, pollution sources must be stringently regulated and mangrove plantation should be conducted to fully recover degraded mangroves.


Asunto(s)
Avicennia , Ecosistema , Contaminación Ambiental , Rhizophoraceae , Animales , Biota , China , Sedimentos Geológicos , Estaciones del Año , Análisis Espacio-Temporal
5.
Mar Pollut Bull ; 115(1-2): 376-382, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28012733

RESUMEN

Occurrence of algal blooms in coastal waters is predicted to be more prevalent in future. To minimize their occurrence, manipulating the grazing pressure by suspension feeders is a potential management strategy, but its effectiveness may depend on their feeding preference. Therefore, we assessed the clearance rate of a widespread serpulid polychaete Hydroides elegans in larval and adult stages on various coastal phytoplankton. Additionally, the growth and development of H. elegans after consuming these phytoplankton were determined to reflect its sustainability to counter algal blooms. Results showed that H. elegans can consume and utilize different phytoplankton, except diatom Thalassiosira pseudonana, for growth and development in both life stages. Given the fast-colonizing ability which allows easy manipulation of abundance, H. elegans is considered practically and biologically ideal for tackling algal blooms. Other suspension feeders with different feeding niches could be used in combination to maximize the versatility of the top-down control.


Asunto(s)
Eutrofización , Conducta Alimentaria , Cadena Alimentaria , Fitoplancton , Poliquetos/fisiología , Animales , Diatomeas , Recursos Naturales
6.
PLoS One ; 9(2): e88165, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523879

RESUMEN

BACKGROUND: In human, a reduction in estrogen has been proposed as one of the key contributing factors for postmenopausal osteoporosis. Rodents are conventional models for studying postmenopausal osteoporosis, but the major limitation is that ovariectomy is needed to mimic the estrogen decline after menopause. Interestingly, in medaka fish (Oryzias latipes), we observed a natural drop in plasma estrogen profile in females during aging and abnormal spinal curvature was apparent in old fish, which are similar to postmenopausal women. It is hypothesized that estrogen associated disorders in bone metabolism might be predicted and prevented by estrogen supplement in aging O. latipes, which could be corresponding to postmenopausal osteoporosis in women. PRINCIPAL FINDINGS: In O. latipes, plasma estrogen was peaked at 8 months old and significantly declined after 10, 11 and 22 months in females. Spinal bone mineral density (BMD) and micro-architecture by microCT measurement progressively decreased and deteriorated from 8 to 10, 12 and 14 months old, which was more apparent in females than the male counterparts. After 10 months old, O. latipes were supplemented with 17α-ethinylestradiol (EE2, a potent estrogen mimic) at 6 and 60 ng/mg fish weight/day for 4 weeks, both reduction in spinal BMD and deterioration in bone micro-architecture were significantly prevented. The estrogenic effect of EE2 in O. latipes was confirmed by significant up-regulation of four key estrogen responsive genes in the liver. In general, bone histomorphometric analyses indicated significantly lowered osteoblasts and osteoclasts numbers and surfaces on vertebrae of EE2-fed medaka. SIGNIFICANCE: We demonstrate osteoporosis development associated with natural drop in estrogen level during aging in female medaka, which could be attenuated by estrogen treatment. This small size fish is a unique alternative non-mammalian vertebrate model for studying estrogen-related molecular regulation in postmenopausal skeletal disorders in vivo without ovariectomy.


Asunto(s)
Envejecimiento , Huesos/metabolismo , Modelos Animales de Enfermedad , Animales , Densidad Ósea/genética , Huesos/patología , Estrógenos/sangre , Etinilestradiol/química , Femenino , Humanos , Japón , Masculino , Oryzias , Osteoporosis Posmenopáusica/sangre , Osteoporosis Posmenopáusica/fisiopatología , Factores Sexuales , Factores de Tiempo , Microtomografía por Rayos X
7.
Artículo en Inglés | MEDLINE | ID: mdl-21664293

RESUMEN

Embryos of aquatic animal model fish have proven to be useful organisms for developmental biology and for early life stage toxicity tests. By virtue of their transparent chorions, imaging of normal and abnormal development can be detected and related to exposure or to alterations due to environmental factors. However, the detection of changes at sub-individual levels of organization is hampered by time required to detect important events within cells and tissues of affected organisms. We describe herein development of a highly cost effective embryo chip enabling stringent inter-individual comparisons and multiplex detection in embryos and eleutheroembryos. As a proof of principle we examine cell proliferation and controlled cell death in normoxic and hypoxic conditions and relate these to tissue turnover in individual organisms. Coupled with a recently developed whole adult animal platform, we can now move beyond the common approach focusing on single target organ to the detection and characterization of systemic phenomena (syndromes) affecting the organism. Taken together, we can now determine adult consequences of early life stage exposure and assess ability of exposed individuals to respond to stresses superimposed along the axis of time.


Asunto(s)
Dispositivos Laboratorio en un Chip , Procedimientos Analíticos en Microchip/métodos , Oryzias/embriología , Oryzias/genética , Animales , Biometría , Muerte Celular , Proliferación Celular , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Hipoxia/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Hígado/anatomía & histología , Hígado/metabolismo , Oryzias/anatomía & histología , Antígeno Nuclear de Célula en Proliferación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA