Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Cell ; 74(3): 609-621.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30922843

RESUMEN

Adult tissue repair and regeneration require stem-progenitor cells that can self-renew and generate differentiated progeny. Skeletal muscle regenerative capacity relies on muscle satellite cells (MuSCs) and their interplay with different cell types within the niche. However, our understanding of skeletal muscle tissue cellular composition is limited. Here, using a combined approach of single-cell RNA sequencing and mass cytometry, we precisely mapped 10 different mononuclear cell types in adult mouse muscle. We also characterized gene signatures and determined key discriminating markers of each cell type. We identified two previously understudied cell populations in the interstitial compartment. One expresses the transcription factor scleraxis and generated tenocytes in vitro. The second expresses markers of smooth muscle and mesenchymal cells (SMMCs) and, while distinct from MuSCs, exhibited myogenic potential and promoted MuSC engraftment following transplantation. The blueprint presented here yields crucial insights into muscle-resident cell-type identities and can be exploited to study muscle diseases.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Fibras Musculares Esqueléticas/citología , Células Satélite del Músculo Esquelético/citología , Animales , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo
2.
Nat Rev Mol Cell Biol ; 14(6): 329-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23698583

RESUMEN

Subsets of mammalian adult stem cells reside in the quiescent state for prolonged periods of time. This state, which is reversible, has long been viewed as dormant and with minimal basal activity. Recent advances in adult stem cell isolation have provided insights into the epigenetic, transcriptional and post-transcriptional control of quiescence and suggest that quiescence is an actively maintained state in which signalling pathways are involved in maintaining a poised state that allows rapid activation. Deciphering the molecular mechanisms regulating adult stem cell quiescence will increase our understanding of tissue regeneration mechanisms and how they are dysregulated in pathological conditions and in ageing.


Asunto(s)
Células Madre Adultas/fisiología , Envejecimiento/fisiología , Epigénesis Genética/fisiología , Regeneración/fisiología , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Células Madre Adultas/citología , Animales , Humanos
3.
Development ; 148(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558315

RESUMEN

Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.


Asunto(s)
Ciclo Celular/fisiología , División Celular/fisiología , Células Madre/citología , Células Madre/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Diferenciación Celular , Proliferación Celular , Epigenómica , Homeostasis/fisiología , Humanos
4.
PLoS Genet ; 17(7): e1009635, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237064

RESUMEN

The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes.


Asunto(s)
Aldehído Deshidrogenasa/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Regulación de la Expresión Génica , Lipasa/genética , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis/genética , Mutación , Peroxisomas/genética , Receptores Citoplasmáticos y Nucleares/genética
5.
EMBO J ; 38(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30979776

RESUMEN

Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.


Asunto(s)
Reprogramación Celular/genética , Músculo Esquelético/fisiología , Regeneración/genética , Células Satélite del Músculo Esquelético/fisiología , Factor de Transcripción YY1/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Glucólisis/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo , Desarrollo de Músculos/genética , Cicatrización de Heridas/genética
6.
Proc Natl Acad Sci U S A ; 117(51): 32464-32475, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293420

RESUMEN

Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA, LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion of LncMyoD in muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation. LncMyoD exclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss of LncMyoD prevents the establishment of a permissive chromatin environment at myogenic E-box-containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion of LncMyoD strongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows that LncMyoD associates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.


Asunto(s)
Cromatina/genética , ARN Largo no Codificante/genética , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula , Transdiferenciación Celular , Cromatina/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Desarrollo de Músculos/fisiología , Proteína MioD/genética , Mioblastos/citología , Mioblastos/fisiología , Células Satélite del Músculo Esquelético/citología
7.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29581096

RESUMEN

Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon injury, MuSCs exit quiescence in vivo to become activated, re-enter the cell cycle to proliferate, and differentiate to repair the damaged muscles. It remains unclear which extrinsic cues and intrinsic signaling pathways regulate quiescence exit during MuSC activation. Here, we demonstrated that inducible MuSC-specific deletion of p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K), rendered MuSCs unable to exit quiescence, resulting in severely impaired MuSC proliferation and muscle regeneration. Genetic reactivation of mTORC1, or knockdown of FoxOs, in p110α-null MuSCs partially rescued the above defects, making them key effectors downstream of PI3K in regulating quiescence exit. c-Jun was found to be a key transcriptional target of the PI3K/mTORC1 signaling axis essential for MuSC quiescence exit. Moreover, induction of a constitutively active PI3K in quiescent MuSCs resulted in spontaneous MuSC activation in uninjured muscles and subsequent depletion of the MuSC pool. Thus, PI3K-p110α is both necessary and sufficient for MuSCs to exit quiescence in response to activating signals.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Proliferación Celular , Células Cultivadas , Ratones Mutantes , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Regeneración
8.
Nature ; 540(7632): 276-279, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27894125

RESUMEN

Platelet-derived growth factor receptor α (PDGFRα) exhibits divergent effects in skeletal muscle. At physiological levels, signalling through this receptor promotes muscle development in growing embryos and angiogenesis in regenerating adult muscle. However, both increased PDGF ligand abundance and enhanced PDGFRα pathway activity cause pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFRα in fibrosis, little is known about the cells through which this pathway acts. Here we show in mice that PDGFRα signalling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of Pdgfra with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signalling and to prevent FAP over-activation. Moreover, increasing the expression of this isoform limits fibrosis in vivo in mice, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem-cell populations.


Asunto(s)
Intrones/genética , Músculo Esquelético/patología , Enfermedades Musculares/prevención & control , Poliadenilación , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regeneración/genética , Células Madre/metabolismo , Adipocitos/citología , Adipocitos/patología , Adipogénesis , Animales , Fibroblastos/citología , Fibroblastos/patología , Fibrosis/genética , Fibrosis/patología , Fibrosis/prevención & control , Masculino , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Transducción de Señal/genética , Células Madre/citología , Células Madre/patología
9.
Proc Natl Acad Sci U S A ; 116(27): 13651-13660, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209021

RESUMEN

Adult hippocampal neurogenesis involves the lifelong generation of neurons. The process depends on the homeostasis of the production of neurons and maintenance of the adult neural stem cell (NSC) pool. Here, we report that α2-chimaerin, a Rho GTPase-activating protein, is essential for NSC homeostasis in adult hippocampal neurogenesis. Conditional deletion of α2-chimaerin in adult NSCs resulted in the premature differentiation of NSCs into intermediate progenitor cells (IPCs), which ultimately depleted the NSC pool and impaired neuron generation. Single-cell RNA sequencing and pseudotime analyses revealed that α2-chimaerin-conditional knockout (α2-CKO) mice lacked a unique NSC subpopulation, termed Klotho-expressing NSCs, during the transition of NSCs to IPCs. Furthermore, α2-CKO led to defects in hippocampal synaptic plasticity and anxiety/depression-like behaviors in mice. Our findings collectively demonstrate that α2-chimaerin plays an essential role in adult hippocampal NSC homeostasis to maintain proper brain function.


Asunto(s)
Proteínas Quimerinas/fisiología , Activadores de GTP Fosfohidrolasa/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Animales , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Hipocampo/fisiología , Homeostasis , Ratones , Ratones Noqueados , Células-Madre Neurales/fisiología , Células Madre/fisiología
10.
Proc Natl Acad Sci U S A ; 113(19): E2705-13, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091974

RESUMEN

Alzheimer's disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of ß-amyloid (Aß) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aß levels and amyloid plaque deposition by promoting the recruitment and Aß phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1ß, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , Interleucina-33/administración & dosificación , Enfermedad de Alzheimer/diagnóstico , Animales , Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/diagnóstico , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/administración & dosificación , Resultado del Tratamiento
11.
Nature ; 482(7386): 524-8, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-22358842

RESUMEN

Among the key properties that distinguish adult mammalian stem cells from their more differentiated progeny is the ability of stem cells to remain in a quiescent state for prolonged periods of time. However, the molecular pathways for the maintenance of stem-cell quiescence remain elusive. Here we use adult mouse muscle stem cells (satellite cells) as a model system and show that the microRNA (miRNA) pathway is essential for the maintenance of the quiescent state. Satellite cells that lack a functional miRNA pathway spontaneously exit quiescence and enter the cell cycle. We identified quiescence-specific miRNAs in the satellite-cell lineage by microarray analysis. Among these, miRNA-489 (miR-489) is highly expressed in quiescent satellite cells and is quickly downregulated during satellite-cell activation. Further analysis revealed that miR-489 functions as a regulator of satellite-cell quiescence, as it post-transcriptionally suppresses the oncogene Dek, the protein product of which localizes to the more differentiated daughter cell during asymmetric division of satellite cells and promotes the transient proliferative expansion of myogenic progenitors. Our results provide evidence of the miRNA pathway in general, and of a specific miRNA, miR-489, in actively maintaining the quiescent state of an adult stem-cell population.


Asunto(s)
Ciclo Celular/genética , Regulación de la Expresión Génica , MicroARNs/genética , Mioblastos/citología , Mioblastos/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Mioblastos/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Tamoxifeno/farmacología , Transcripción Genética/efectos de los fármacos
12.
Curr Top Dev Biol ; 158: 151-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670704

RESUMEN

The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.


Asunto(s)
Homeostasis , Músculo Esquelético , Regeneración , Nicho de Células Madre , Regeneración/fisiología , Humanos , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Animales , Nicho de Células Madre/fisiología , Células Madre/citología , Células Madre/fisiología , Células Madre/metabolismo
13.
Cell Stem Cell ; 31(1): 89-105.e6, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141612

RESUMEN

Stem cells are known for their resilience and enhanced activity post-stress. The mammary gland undergoes frequent remodeling and is subjected to recurring stress during the estrus cycle, but it remains unclear how mammary stem cells (MaSCs) respond to the stress and contribute to regeneration. We discovered that cytotoxic stress-induced activation of CD11c+ ductal macrophages aids stem cell survival and prevents differentiation. These macrophages boost Procr+ MaSC activity through IL1ß-IL1R1-NF-κB signaling during the estrus cycle in an oscillating manner. Deleting IL1R1 in MaSCs results in stem cell loss and skewed luminal differentiation. Moreover, under cytotoxic stress from the chemotherapy agent paclitaxel, ductal macrophages secrete higher IL1ß levels, promoting MaSC survival and preventing differentiation. Inhibiting IL1R1 sensitizes MaSCs to paclitaxel. Our findings reveal a recurring inflammatory process that regulates regeneration, providing insights into stress-induced inflammation and its impact on stem cell survival, potentially affecting cancer therapy efficacy.


Asunto(s)
Glándulas Mamarias Animales , Células Madre , Femenino , Animales , Diferenciación Celular/fisiología , Transducción de Señal , Paclitaxel/farmacología , Paclitaxel/metabolismo
14.
Dev Cell ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38848717

RESUMEN

The histone H3 lysine 9 methyltransferase SETDB1 controls transcriptional repression to direct stem cell fate. Here, we show that Setdb1 expression by adult muscle stem cells (MuSCs) is required for skeletal muscle regeneration. We find that SETDB1 represses the expression of endogenous retroviruses (ERVs) in MuSCs. ERV de-repression in Setdb1-null MuSCs prevents their amplification following exit from quiescence and promotes cell death. Multi-omics profiling shows that chromatin decompaction at ERV loci activates the DNA-sensing cGAS-STING pathway, entailing cytokine expression by Setdb1-null MuSCs. This is followed by aberrant infiltration of inflammatory cells, including pathological macrophages. The ensuing histiocytosis is accompanied by myofiber necrosis, which, in addition to progressive MuSCs depletion, completely abolishes tissue repair. In contrast, loss of Setdb1 in fibro-adipogenic progenitors (FAPs) does not impact immune cells. In conclusion, genome maintenance by SETDB1 in an adult somatic stem cell is necessary for both its regenerative potential and adequate reparative inflammation.

15.
Stem Cells ; 30(2): 232-42, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22045613

RESUMEN

Satellite cells (SCs) are myogenic stem cells found in skeletal muscle that function to repair tissue damaged by injury or disease. SCs are quiescent at rest, although the signaling pathways required to maintain quiescence are unknown. Using a transgenic Notch reporter mouse and quantitative reverse-transcription polymerase chain reaction analysis of Notch target genes, we determined that Notch signaling is active in quiescent SCs. SC-specific deletion of recombining binding protein-Jκ (RBP-Jκ), a nuclear factor required for Notch signaling, resulted in the depletion of the SC pool and muscles that lacked any ability to regenerate in response to injury. SC depletion was not due to apoptosis. Rather, RBP-Jκ-deficient SCs spontaneously activate, fail to self-renew, and undergo terminal differentiation. Intriguingly, most of the cells differentiate without first dividing. They then fuse with adjacent myofibers, leading to the gradual disappearance of SCs from the muscle. These results demonstrate the requirement of Notch signaling for the maintenance of the quiescent state and for muscle stem cell homeostasis by the regulation of self-renewal and differentiation, processes that are all critical for normal postnatal myogenesis.


Asunto(s)
Células Madre Adultas/fisiología , Puntos de Control del Ciclo Celular , Músculo Esquelético/citología , Receptores Notch/metabolismo , Transducción de Señal , Células Madre Adultas/metabolismo , Animales , Apoptosis , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Desarrollo de Músculos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo
16.
Methods Mol Biol ; 2640: 445-452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995612

RESUMEN

Uncovering the transcriptomic signatures of quiescent muscle stem cells elicits the regulatory networks on stem cell quiescence. However, the spatial clues of the transcripts are missing in the commonly used quantitative analysis such as qPCR and RNA-seq. Visualization of RNA transcripts using single-molecule in situ hybridization provides additional subcellular localization clues to understanding gene expression signatures. Here, we provide an optimized protocol of smFISH analysis on Fluorescence-Activated Cell Sorting isolated muscle stem cells to visualize low-abundance transcripts.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre , Hibridación Fluorescente in Situ/métodos , ARN/genética , Músculos
17.
STAR Protoc ; 4(3): 102376, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352103

RESUMEN

Chromatin accessibility is critical for cell identity. Conventional ATAC-seq can examine chromatin accessibility on freshly prepared muscle stem cells or satellite cells (SCs); however, isolating SCs in mice remains challenging. Here, we present a protocol to preserve the in vivo chromatin profile of SCs by applying paraformaldehyde (PFA) perfusion throughout the mouse before SC isolation. We describe steps for PFA perfusion and FACS sorting of SCs. We then detail library preparation for ATAC-seq. For complete details on the use and execution of this protocol, please refer to Dong et al.1.


Asunto(s)
Cromatina , Células Satélite del Músculo Esquelético , Animales , Ratones , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Músculos
18.
Methods Mol Biol ; 2640: 369-395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995608

RESUMEN

Skeletal muscle possesses a remarkable regenerative capacity, mainly relying on a population of undifferentiated and unipotent muscle progenitors, called muscle stem cells (MuSCs) or satellite cells, and their interplay with various cell types within the niche. Investigating the cellular composition of skeletal muscle tissues and the heterogeneity among various cell populations is crucial to the unbiased understanding of how cellular networks work in harmony at the population level in the context of skeletal muscle homeostasis, regeneration, aging, and diseases. As opposed to probing the average profile in a cell population, single-cell RNA-seq has unlocked access to the transcriptomic landscape characterization of individual cells in a highly parallel manner. This chapter describes the workflow for single-cell transcriptomic analysis of mononuclear cells in skeletal muscle by taking advantage of the droplet-based single-cell RNA-seq platform, Chromium Single Cell 3' solution from 10x Genomics®. Using this protocol, we can reveal insights into muscle-resident cell-type identities, which can be exploited to study the muscle stem cell niche further.


Asunto(s)
Células Satélite del Músculo Esquelético , Transcriptoma , Músculo Esquelético/metabolismo , Células Madre , Genómica , Análisis de la Célula Individual
19.
STAR Protoc ; 4(4): 102750, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38041820

RESUMEN

Studying skeletal muscle stem cells (MuSCs) quiescence is challenging as they quickly activate within hours of isolation from muscle. Here, we present a protocol to disassociate and characterize fixed peptides from quiescent MuSCs using trapped ion-mobility time-of-flight mass spectrometry (MS). We describe steps for mouse perfusion, fluorescence-activated cell sorting preparation and sorting, protein extraction, digestion, and liquid chromatography MS analysis. This protocol can be applied to other less-abundant somatic stem cell types using mouse lines with a reporter. For complete details on the use and execution of this protocol, please refer to Zeng et al. (2022, 2023).1,2.


Asunto(s)
Células Madre Adultas , Proteómica , Animales , Ratones , Fibras Musculares Esqueléticas , División Celular , Movimiento Celular
20.
Dev Cell ; 58(15): 1383-1398.e6, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37321216

RESUMEN

Age-associated impairments in adult stem cell functions correlate with a decline in somatic tissue regeneration capacity. However, the mechanisms underlying the molecular regulation of adult stem cell aging remain elusive. Here, we provide a proteomic analysis of physiologically aged murine muscle stem cells (MuSCs), illustrating a pre-senescent proteomic signature. During aging, the mitochondrial proteome and activity are impaired in MuSCs. In addition, the inhibition of mitochondrial function results in cellular senescence. We identified an RNA-binding protein, CPEB4, downregulated in various aged tissues, which is required for MuSC functions. CPEB4 regulates the mitochondrial proteome and activity through mitochondrial translational control. MuSCs devoid of CPEB4 induced cellular senescence. Importantly, restoring CPEB4 expression rescued impaired mitochondrial metabolism, improved geriatric MuSC functions, and prevented cellular senescence in various human cell lines. Our findings provide the basis for the possibility that CPEB4 regulates mitochondrial metabolism to govern cellular senescence, with an implication of therapeutic intervention for age-related senescence.


Asunto(s)
Proteoma , Proteómica , Anciano , Animales , Humanos , Ratones , Envejecimiento/fisiología , Senescencia Celular , Músculo Esquelético/fisiología , Músculos , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA