Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(31): E2875-84, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858448

RESUMEN

Macroautophagy (hereafter autophagy) functions in the nonselective clearance of cytoplasm. This process participates in many aspects of cell physiology, and is conserved in all eukaryotes. Autophagy begins with the organization of the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. Autophagy occurs at a basal level and can be induced by various types of stress; the process must be tightly regulated because insufficient or excessive autophagy can be deleterious. A complex composed of Atg17-Atg31-Atg29 is vital for PAS organization and autophagy induction, implying a significant role in autophagy regulation. In this study, we demonstrate that Atg29 is a phosphorylated protein and that this modification is critical to its function; alanine substitution at the phosphorylation sites blocks its interaction with the scaffold protein Atg11 and its ability to facilitate assembly of the PAS. Atg29 has the characteristics of an intrinsically disordered protein, suggesting that it undergoes dynamic conformational changes on interaction with a binding partner(s). Finally, single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Fosforilación/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
2.
Front Mol Neurosci ; 16: 1243499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348236

RESUMEN

The choroid plexus (ChP) is a highly vascularized tissue lining the ventricular space of the brain. The ChP generates cerebrospinal fluid (CSF) and forms a protective barrier in the central nervous system (CNS). Recently, a three-dimensional human pluripotent stem cell (hPSC)-derived ChP organoid model has been developed. This model generates cystic structures that are filled with a fluid resembling CSF and are surrounded by an epithelial layer expressing ependymal choroid plexus-specific markers. Here we describe a method to generate these choroid plexus organoids using a commercial kit and methods to extract the CSF-like fluid for use in downstream analysis.

3.
Nat Commun ; 11(1): 5550, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144563

RESUMEN

The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Diagnóstico por Imagen , Neuronas/fisiología , Optogenética , Potenciales de Acción/fisiología , Animales , Supervivencia Celular , Células Cultivadas , Líquido Cefalorraquídeo/metabolismo , Medios de Cultivo , Fluorescencia , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Luz , Red Nerviosa/fisiología , Concentración Osmolar , Ratas , Relación Señal-Ruido , Sinapsis/fisiología
4.
Autophagy ; 13(12): 2018-2027, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28976798

RESUMEN

Although the human ULK complex mediates phagophore initiation similar to the budding yeast Saccharomyces cerevisiae Atg1 complex, this complex contains ATG101 but not Atg29 and Atg31. Here, we analyzed the fission yeast Schizosaccharomyces pombe Atg1 complex, which has a subunit composition that resembles the human ULK complex. Our pairwise coprecipitation experiments showed that while the interactions between Atg1, Atg13, and Atg17 are conserved, Atg101 does not bind Atg17. Instead, Atg101 interacts with the HORMA domain of Atg13 and this enhances the stability of both proteins. We also found that S. pombe Atg17, the putative scaffold subunit, adopts a rod-shaped structure with no discernible curvature. Interestingly, S. pombe Atg17 binds S. cerevisiae Atg13, Atg29, and Atg31 in vitro, but it cannot complement the function of S. cerevisiae Atg17 in vivo. Furthermore, S. pombe Atg101 cannot substitute for the function of S. cerevisiae Atg29 and Atg31 in vivo. Collectively, our work generates new insights into the subunit organization and structural properties of an Atg101-containing Atg1/ULK complex.


Asunto(s)
Secuencia Conservada , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/ultraestructura
5.
Autophagy ; 11(6): 891-905, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25998554

RESUMEN

The Atg1 complex, which contains 5 major subunits: Atg1, Atg13, Atg17, Atg29, and Atg31, regulates the induction of autophagy and autophagosome formation. To gain a better understanding of the overall architecture and assembly mechanism of this essential autophagy regulatory complex, we have reconstituted a core assembly of the Saccharomyces cerevisiae Atg1 complex composed of full-length Atg17, Atg29, and Atg31, along with the C-terminal domains of Atg1 (Atg1[CTD]) and Atg13 (Atg13[CTD]). Using chemical-crosslinking coupled with mass spectrometry (CXMS) analysis we systematically mapped the intersubunit interaction interfaces within this complex. Our data revealed that the intrinsically unstructured C-terminal domain of Atg29 interacts directly with Atg17, whereas Atg17 interacts with Atg13 in 2 distinct intrinsically unstructured regions, including a previously unknown motif that encompasses several putative phosphorylation sites. The Atg1[CTD] crosslinks exclusively to the Atg13[CTD] and does not appear to make direct contact with the Atg17-Atg31-Atg29 scaffold. Finally, single-particle electron microscopy analysis revealed that both the Atg13[CTD] and Atg1[CTD] localize to the tip regions of Atg17-Atg31-Atg29 and do not alter the distinct curvature of this scaffolding subcomplex. This work provides a comprehensive understanding of the subunit interactions in the fully assembled Atg1 core complex, and uncovers the potential role of intrinsically disordered regions in regulating complex integrity.


Asunto(s)
Autofagia/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Fagosomas/metabolismo
6.
Front Biol (Beijing) ; 9(1): 18-34, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27656195

RESUMEN

Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.

7.
Autophagy ; 9(10): 1467-74, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23939028

RESUMEN

Atg17, in complex with Atg29 and Atg31, constitutes a key module of the Atg1 kinase signaling complex and functions as an important organizer of the phagophore assembly site in the yeast Saccharomyces cerevisiae. We have determined the three-dimensional reconstruction of the full S. cerevisiae Atg17-Atg31-Atg29 complex by single-particle electron microscopy. Our structure shows that Atg17-Atg31-Atg29 is dimeric and adopts a relatively rigid and extended "S-shape" architecture with an end-to-end distance of approximately 345 Å. Subunit mapping analysis indicated that Atg17 mediates dimerization and generates a central rod-like scaffold, while Atg31 and Atg29 form two globular domains that are tethered to the concave sides of the scaffold at the terminal regions. Finally, our observation that Atg17 adopts multiple conformations in the absence of Atg31 and Atg29 suggests that the two smaller components play key roles in defining and maintaining the distinct curvature of the ternary complex.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , Microscopía Electrónica/métodos , Saccharomyces cerevisiae/citología , Factores Complejos Ternarios/metabolismo
8.
Autophagy ; 9(12): 2178-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24141181

RESUMEN

Macroautophagy (hereafter autophagy) initiates at the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. As the first protein complex targeted to the PAS, the Atg17-Atg31-Atg29 complex serves as the scaffold for other Atg proteins and plays a critical role for the organization of the PAS, and in autophagy initiation. We recently showed that this complex is constitutively formed and activated by the phosphorylation of Atg29 when autophagy is induced. Phosphorylation of Atg29 is required for its interaction with Atg11, another scaffold protein, and its function for promoting the proper assembly of the PAS. Single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends. This structural arrangement allows Atg29 to interact with Atg11, and is critical in the organization of the intact Atg1 complex.


Asunto(s)
Autofagia , Fagosomas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA