Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 22(1): 417, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428211

RESUMEN

BACKGROUND: Benzamide-based radioligands targeting melanin were first developed for imaging melanoma and then for therapeutic purpose with targeted radionuclide therapy (TRT). [131I]ICF01012 presents a highly favorable pharmacokinetics profile in vivo for therapy. Tumour growth reduction and increase survival have been established in preclinical models of melanoma. According the these preclinical results, we initiate a first-in-human study aimed to determine the recommended dose of [131I]ICF01012 to administer for the treatment of patients with pigmented metastatic melanoma. METHODS: The MELRIV-1 trial is an open-label, multicentric, dose-escalation phase I trial. The study is divided in 2 steps, a selection part with an IV injection of low activity of [131I]ICF01012 (185 MBq at D0) to select patients who might benefit from [131I]ICF01012 TRT in therapeutic part, i.e. patient presenting at least one tumour lesion with [131I]ICF01012 uptake and an acceptable personalized dosimetry to critical organs (liver, kidney, lung and retina). According to dose escalation scheme driven by a Continual Reassessment Method (CRM) design, a single therapeutic injection of 800 MBq/m2, or 1600 MBq/m2, or 2700 MBq/m2 or 4000 MBq/m2 of [131I]ICF01012 will be administered at D11 (± 4 days). The primary endpoint is the recommended therapeutic dose of [131I]ICF01012, with DLT defined as any grade 3-4 NCI-CT toxicity during the 6 weeks following therapeutic dose. Safety, pharmacokinetic, biodistribution (using planar whole body and SPECT-CT acquisitions), sensitivity / specificity of [131I]ICF01012, and therapeutic efficacy will be assessed as secondary objectives. Patients who received therapeutic injection will be followed until 3 months after TRT. Since 6 to 18 patients are needed for the therapeutic part, up to 36 patients will be enrolled in the selection part. DISCUSSION: This study is a first-in-human trial evaluating the [131I]ICF01012 TRT in metastatic malignant melanomas with a diagnostic dose of the [131I]ICF01012 to select the patients who may benefit from a therapeutic dose of [131I]ICF01012, with at least one tumor lesion with [131I]ICF01012 uptake and an acceptable AD to healthy organ. TRIAL REGISTRATION: Clinicaltrials.gov : NCT03784625 . Registered on December 24, 2018. Identifier in French National Agency for the Safety of Medicines and Health Products (ANSM): N°EudraCT 2016-002444-17.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Ensayos Clínicos Fase I como Asunto , Humanos , Radioisótopos de Yodo/uso terapéutico , Melanoma/patología , Estudios Multicéntricos como Asunto , Neoplasias Primarias Secundarias/tratamiento farmacológico , Quinoxalinas , Distribución Tisular
2.
Molecules ; 28(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36615280

RESUMEN

The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.


Asunto(s)
Cobre , Inmunoconjugados , Humanos , Animales , Ratones , Quelantes/química , Inmunoconjugados/química , Azidas , Anticuerpos Monoclonales/química , Trastuzumab , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos
3.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744895

RESUMEN

Isocitrate dehydrogenases (IDHs) are metabolic enzymes commonly mutated in human cancers (glioma, acute myeloid leukaemia, chondrosarcoma, and intrahepatic cholangiocarcinoma). These mutated variants of IDH (mIDH) acquire a neomorphic activity, namely, conversion of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate involved in tumourigenesis. Thus, mIDHs have emerged as highly promising therapeutic targets, and several mIDH specific inhibitors have been developed. However, the evaluation of mIDH status, currently performed by biopsy, is essential for patient stratification and thus treatment and follow-up. We report herein the development of new radioiodinated and radiofluorinated analogues of olutasidenib (FT-2102) as tools for noninvasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging of mIDH1 up- and dysregulation in tumours. Nonradiolabelled derivatives 2 and 3 halogenated at position 6 of the quinolinone scaffold were synthesised and tested in vitro for their inhibitory potencies and selectivities in comparison with the lead compound FT-2102. Using a common organotin precursor, (S)-[125I]2 and (S)-[18F]3 were efficiently synthesised by radio-iododemetallation and copper-mediated radiofluorination, respectively. Both radiotracers were stable at room temperature in saline or DPBS solution and at 37 °C in mouse serum, allowing future planning of their in vitro and in vivo evaluations in glioma and chondrosarcoma models.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias Óseas , Condrosarcoma , Glioma , Leucemia Mieloide Aguda , Animales , Conductos Biliares Intrahepáticos , Condrosarcoma/diagnóstico por imagen , Condrosarcoma/genética , Glioma/diagnóstico por imagen , Glioma/genética , Humanos , Ratones , Mutación , Tomografía de Emisión de Positrones , Piridinas , Quinolinas , Tomografía Computarizada de Emisión de Fotón Único
4.
Invest New Drugs ; 39(2): 295-303, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32948981

RESUMEN

Currently, there is no gold standard treatment for Extraskeletal Myxoid Chondrosarcomas (EMC) making wide margin surgical resection the most effective alternative treatment. Nevertheless, in previous preclinical studies our lab demonstrated the potential of the hypoxia-activated prodrug (HAP) ICF05016 on EMC murine model inoculated with the H-EMC-SS human cell line. The aim of this study was to assess, in vivo, the relevance of the combination of this HAP with External Beam Radiotherapy (EBR). Firstly EMC-bearing mice were treated with 6 Gy or 12 Gy of EBR (single 6 MV photon). Then for combination of HAP and EBR, animals received 6 doses of ICF05016 (46.8 µmol/kg, intravenously) at 4-day intervals, with 6 Gy EBR performed 24 h after the 3rd dose of HAP. Animals were monitored throughout the study for clinical observations (tumour growth, side effects) and survival studies were performed. From tumour samples, PCNA, Ki-67 and p21 expressions were used as markers of proliferation and cell cycle arrest. Statistical significances were determined using Kruskall-Wallis and log rank tests. The radiosensitivity of the EMC model was demonstrated at 12 Gy with significant inhibition of tumour growth. Then, the HAP strategy potentiated EBR efficacy at a lower dose (6 Gy) by improving survival without generating side effects. Thus, results of this study showed the potential interest of ICF05016 for the combination with EBR in the management of EMC.


Asunto(s)
Quimioradioterapia/métodos , Condrosarcoma/terapia , Imidazoles/administración & dosificación , Neoplasias de los Tejidos Conjuntivo y Blando/terapia , Profármacos/administración & dosificación , Animales , Línea Celular , Quimioradioterapia/efectos adversos , Condrosarcoma/mortalidad , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones SCID , Neoplasias de los Tejidos Conjuntivo y Blando/mortalidad , Dosis de Radiación , Carga Tumoral
5.
Bioorg Chem ; 98: 103747, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32208207

RESUMEN

The tumor microenvironment in chondrosarcoma (CHS), a chemo- and radio-resistant cancer provides unique hallmarks for developing a chondrosarcoma targeted drug-delivery system. Tumor targeting could be achieved using a quaternary ammonium function (QA) as a ligand for aggrecan, the main high negative charged proteoglycan of the extracellular matrix of CHS, and a 2-nitroimidazole as trigger that enables hypoxia-responsive drug release. In a previous work, ICF05016 was identified as efficient proteoglycan-targeting hypoxia-activated prodrug in a human extraskeletal myxoid chondrosarcoma model in mice and a first study of the structure-activity relationship of the QA function and the alkyl linker length was conducted. Here, we report the second part of the study, namely the modification of the nitro-aromatic trigger and the position of the proteoglycan-targeting ligand at the aromatic ring as well as the nature of the alkylating mustard. Synthetic approaches have been established to functionalize the 2-nitroimidazole ring at the N-1 and C-4 positions with a terminal tertiary alkyl amine, and to perform the phosphorylation step namely through the use of an amine borane complex, leading to phosphoramide and isophosphoramide mustards and also to a phosphoramide mustard bearing four 2-chloroethyl chains. In a preliminary study using a reductive chemical activation, QA-conjugates, except the 4-nitrobenzyl one, were showed to undergo efficient cleavage with release of the corresponding mustard. However N,N,N-trimethylpropylaminium tethered to the N-1 or C-4 positions of the imidazole seemed to hamper the enzymatic reduction of the prodrugs and all tested compounds featured moderate selectivity toward hypoxic cells, likely not sufficient for application as hypoxia-activated prodrugs.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Condrosarcoma/tratamiento farmacológico , Diseño de Fármacos , Neoplasias de los Tejidos Conjuntivo y Blando/tratamiento farmacológico , Mostazas de Fosforamida/farmacología , Profármacos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Condrosarcoma/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias de los Tejidos Conjuntivo y Blando/patología , Mostazas de Fosforamida/síntesis química , Mostazas de Fosforamida/química , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad
6.
Bioorg Chem ; 86: 346-362, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30753989

RESUMEN

With the aim to develop a specific radioligand for imaging the cyclic nucleotide phosphodiesterase 5 (PDE5) in brain by positron emission tomography (PET), seven new fluorinated inhibitors (3-9) were synthesized on the basis of a quinoline core. The inhibitory activity for PDE5 together with a panel of other PDEs was determined in vitro and two derivatives were selected for IC50 value determination. The most promising compound 7 (IC50 = 5.92 nM for PDE5A), containing a 3-fluoroazetidine moiety, was further radiolabeled by aliphatic nucleophilic substitution of two different leaving groups (nosylate and tosylate) using [18F]fluoride. The use of the nosylate precursor and tetra-n-butyl ammonium [18F]fluoride ([18F]TBAF) in 3-methyl-3-pentanol combined with the addition of a small amount of water proved to be the best radiolabeling conditions achieving a RCY of 4.9 ±â€¯1.5% in an automated procedure. Preliminary biological investigations in vitro and in vivo were performed to characterize this new PDE5 radioligand. Metabolism studies of [18F]7 in mice revealed a fast metabolic degradation with the formation of radiometabolites which have been detected in the brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Colorantes Fluorescentes/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Tomografía de Emisión de Positrones , Quinolinas/farmacología , Animales , Encéfalo/enzimología , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Radioisótopos de Flúor , Ligandos , Ratones , Estructura Molecular , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/química , Quinolinas/síntesis química , Quinolinas/química , Porcinos , Distribución Tisular
7.
Bioorg Med Chem ; 25(20): 5692-5708, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28927903

RESUMEN

Nitrogen mustards, such as chlorambucil (CLB), can cause adverse side-effects due to ubiquitous distribution in non-target organs. To minimize this toxicity, strategies of tumor-targeting drug delivery have been developed, where a cytotoxic warhead is linked to a tumor-cell-specific small ligand. Malignant cells exhibit marked glucose avidity and an accelerated metabolism by aerobic glycolysis, known as the Warburg effect, and recognized as a hallmark of cancer. A targeting approach exploiting the Warburg effect by conjugation of CLB to 2-fluoro-2-deoxyglucose (FDG) was previously reported and identified two peracetylated glucoconjugates 2 and 3 with promising antitumor activities in vivo. These results prompted us to investigate the importance of the spacer in this tumor-targeting glucose-based conjugates. Here we report the chemical synthesis and an in vitro cytotoxicity evaluation, using a 5-member panel of human tumor cell lines and human fibroblasts, of 16 new CLB glucoconjugates in which the alkylating drug is attached to the C-1 position of FDG via different linkages. We studied the structure-activity relationships in the linker, and evidenced the positive impact of an aromatic linker on in vitro cytotoxicity: compound 51 proved to be the most active FDG-CLB glucoside, characterized by a bis-aromatic spacer tethered to CLB through an amide function.


Asunto(s)
Antígenos de Neoplasias , Clorambucilo/química , Sistemas de Liberación de Medicamentos , Fluorodesoxiglucosa F18/química , Fluorodesoxiglucosa F18/farmacología , Antígenos de Neoplasias/química , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/toxicidad , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Clorambucilo/síntesis química , Clorambucilo/farmacología , Fluorodesoxiglucosa F18/síntesis química , Fluorodesoxiglucosa F18/toxicidad , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Relación Estructura-Actividad
8.
Nanomedicine ; 12(7): 2107-2113, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27288667

RESUMEN

Upconverting nanoparticles (UCNPs) were successfully dendronized for fluorescence medical imaging applications. The structural and morphological characterizations of resulting core/shell NaYF4:Yb,Tm@dendrons nanoparticles were performed by means of X-ray diffraction, infrared spectroscopy and transmission electron microscopy. In vitro cytotoxicity assays have evidenced their low toxicity. In vivo fluorescence imaging study was performed in mice upon IR excitation, showing promising imaging capacities at low concentrations (0.5mg/mL) and low power (50mW/cm2).


Asunto(s)
Dendrímeros , Microscopía Electrónica de Transmisión , Nanopartículas , Animales , Luminiscencia , Ratones , Difracción de Rayos X
9.
Org Biomol Chem ; 13(2): 388-97, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25363288

RESUMEN

In the development of our melanoma-selective delivery approach, three preselected conjugates of 5-iodo-2'-deoxyuridine (IUdR) to the ICF01012 melanoma-carrier were radiolabelled with iodine-125, and their in vivo distribution profile was determined. A radioiodination method for the conjugate 1a and its PEGylated derivatives 1b-c was developed via electrophilic iododestannylation in good radiochemical yield with excellent radiochemical purity (>99%). When administered to melanoma-bearing mice, the PEGylated conjugates exhibited an increased tumour uptake with a prolonged residence time. PEGylation also resulted in enhanced tumour selectivity compared with the non-PEGylated parent. These characteristics support further development of this model to achieve maximal concentration of anticancer therapeutics at the local site of action and minimize distribution to non-targeted sites.


Asunto(s)
Antineoplásicos/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Polietilenglicoles/química , Animales , Antineoplásicos/farmacocinética , Sistemas de Liberación de Medicamentos , Ratones , Distribución Tisular
10.
Invest New Drugs ; 32(4): 587-97, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24691673

RESUMEN

We previously selected two melanin-targeting radioligands [(125)I]ICF01035 and [(125)I]ICF01040 for melanoma-targeted (125)I radionuclide therapy according to their pharmacological profile in mice bearing B16F0 tumors. Here we demonstrate in vitro that these compounds present different radiotoxicities in relation to melanin and acidic vesicle contents in B16F0, B16F0 PTU and A375 cell lines. ICF01035 is effectively observed in nuclei of achromic (A375) melanoma or in melanosomes of melanized melanoma (B16F0), while ICF01040 stays in cytoplasmic vesicles in both cells. [(125)I]ICF01035 induced a similar survival fraction (A50) in all cell lines and led to a significant decrease in S-phase cells in amelanotic cell lines. [(125)I]ICF01040 induced a higher A50 in B16 cell lines compared to [(125)I]ICF01035 ones. [(125)I]ICF01040 induced a G2/M blockade in both A375 and B16F0 PTU, associated with its presence in cytoplasmic acidic vesicles. These results suggest that the radiotoxicity of [(125)I]ICF01035 and [(125)I]ICF01040 are not exclusively reliant on DNA alterations compatible with γ rays but likely result from local dose deposition (Auger electrons) leading to toxic compound leaks from acidic vesicles. In vivo, [(125)I]ICF01035 significantly reduced the number of B16F0 lung colonies, enabling a significant increase in survival of the treated mice. Targeting melanosomes or acidic vesicles is thus an option for future melanoma therapy.


Asunto(s)
Acridinas/administración & dosificación , Radioisótopos de Yodo/administración & dosificación , Melanoma Experimental/dietoterapia , Melanoma Experimental/tratamiento farmacológico , Radiofármacos/administración & dosificación , Acridinas/metabolismo , Animales , Línea Celular Tumoral , Electrones , Humanos , Radioisótopos de Yodo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Radiofármacos/metabolismo
11.
Nanomedicine ; 10(8): 1887-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24972007

RESUMEN

This work takes place in the "cartilage targeting strategy", consisting in using the quaternary ammonium (QA) function as a vector to proteoglycans (PGs) of extracellular matrix (ECM). The objective was to demonstrate that QA could address gadolinium based small rigid platforms (SRP) to PG-rich tumors. SRP were functionalized with QA, radiolabeled with (111)Indium and evaluated for biodistribution in vivo, respectively to non functionalized SRP, in two experimental models: (i) the HEMCSS human xenograft model; (ii) the Swarm rat chondrosarcoma (SRC) orthotopic model. The contribution of cellular uptake to tumoral accumulation of nano-objects was also determined from in vitro binding. In the SRC model expressing a highly and homogeneously distributed PG content, tumor accumulation and retention of SRP@QA were increased by 40% as compared to non-functionalized SRP. When considering the radiosensitizing potential of gadolinium based SRP, these results provide hopes for the radiobiological approach of highly resistant tumor such as chondrosarcoma. FROM THE CLINICAL EDITOR: In this study, gadolinium-based complexing DOTA-surfaced small polysiloxane nanoparticles were functionalized with quaternary ammonium derivatives that target the extracellular matrix of chondrosarcoma. The authors demonstrate in a rat model that the use of these constructs results in a 40% increase of tumor accumulation and retention compared to non-functionalized (and otherwise same) platforms. Similar approaches would be welcome additions to the clinical armamentarium addressing chondrosarcoma.


Asunto(s)
Compuestos de Amonio/química , Condrosarcoma/metabolismo , Nanopartículas/química , Compuestos de Amonio/uso terapéutico , Animales , Línea Celular Tumoral , Condrosarcoma/tratamiento farmacológico , Matriz Extracelular , Gadolinio/química , Humanos , Masculino , Nanopartículas/metabolismo , Ratas , Ratas Sprague-Dawley , Siloxanos/química , Ensayos Antitumor por Modelo de Xenoinjerto
12.
EJNMMI Radiopharm Chem ; 9(1): 28, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564046

RESUMEN

BACKGROUND: (S)-[18F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (S)-[18F]FETrp from a corresponding enantiopure tosylate precursor. RESULTS: Enantiomerically pure (S)- and (R)-FETrp references as well as tosylate precursors (S)- and (R)-3 were obtained from corresponding Na-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (S)-[18F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (n = 3). CONCLUSIONS: To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (S)-[18F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (S)-[18F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.

13.
J Control Release ; 366: 567-584, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215985

RESUMEN

Trastuzumab emtansine (Kadcyla®) was the first antibody-drug conjugate (ADC) approved by the Food and Drug Administration in 2013 against a solid tumor, and the first ADC to treat human epidermal growth factor receptor 2 positive (HER2+) breast cancer. However, this second generation ADC is burden by several limitations included heterogeneity, limited activity against heterogeneous tumor (regarding antigen expression) and suboptimal tumor penetration. To address this, different development strategies are oriented towards homogeneous conjugation, new drugs, optimized linkers and/or smaller antibody formats. To reach better developed next generation ADCs, a key parameter to consider is the management of the hydrophobicity associated with the linker-drug, increasing with and limiting the drug-to-antibody ratio (DAR) of the ADC. Here, an innovative branched pegylated linker was developed, to control the hydrophobicity of the monomethyl auristatin E (MMAE) and its cathepsin B-sensitive trigger. This branched pegylated linker-MMAE was then used for the efficient generation of internalizing homogeneous ADC of DAR 8 and minibody-drug conjugate of DAR 4, targeting HER2. Both immunoconjugates were then evaluated in vitro and in vivo on breast cancer models. Interestingly, this study highlighted that the minibody-MMAE conjugate of DAR 4 was the best immunoconjugate regarding in vitro cellular internalization and cytotoxicity, gamma imaging, ex vivo biodistribution profile in mice and efficient reduction of tumor size in vivo. These results are very promising and encourage us to explore further fragment-drug conjugate development.


Asunto(s)
Aminobenzoatos , Neoplasias de la Mama , Inmunoconjugados , Oligopéptidos , Estados Unidos , Ratones , Humanos , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Distribución Tisular , Línea Celular Tumoral , Inmunoconjugados/uso terapéutico , Ado-Trastuzumab Emtansina , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles
14.
Int J Cancer ; 133(5): 1042-53, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23404099

RESUMEN

The development of alternative therapies for melanoma treatment is of great interest as long-term tumour regression is not achieved with new targeted chemotherapies on selected patients. We previously demonstrated that radioiodinated heteroarylcarboxamide ([131I]ICF01012) induced a strong anti-tumoural effect by inhibiting both primary tumour growth and dissemination process in a B16BL6 melanoma model. In our study, we show that a single injection of [131I]ICF01012 (ranging from 14.8 to 22.2 MBq) was effective and associated with low and transient haematological toxicity. Concerning pigmented organs, cutaneous melanocytes and skin were undamaged. In 30% of treated animals, no histological alteration of retina was observed, and in the remaining 70%, damages were restricted to the optic nerve area. Using the Medical Internal Radiation Dose methodology, we determined that the absorbed dose in major organs is very low (<4 Gy) and that a delivery of 30 Gy to the tumour is sufficient for an effective anti-tumoural response. Molecular analyses of treated tumours showed a strong radiobiological effect with a decrease in proliferation, survival and pro-angiogenic-related markers and an increase in tumour suppressor gene expression, melanogenesis and anti-angiogenic markers. All these features are in accordance with a tumour cell death mechanism that mainly occurs by mitotic catastrophe and provide a better understanding of in vivo anti-tumoural effects of [131I] radionuclide. Our findings raise [131I]ICF01012 a good candidate for disseminated melanoma treatment and strongly support transfer of [131I]ICF01012 to clinical trial.


Asunto(s)
Radioisótopos de Yodo/uso terapéutico , Melaninas/antagonistas & inhibidores , Melanoma Experimental/radioterapia , Quinoxalinas/uso terapéutico , Animales , Ciclo Celular/efectos de la radiación , Humanos , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL
15.
Org Biomol Chem ; 11(37): 6372-84, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23959430

RESUMEN

In the search for more selective anticancer drugs, we designed and synthesized seven conjugates varying the structure of the linker connecting the 5-iodo-2'-deoxyuridine (IUdR) to the ICF 01012 melanoma-carrier for potential intratumoural specific drug release. Chemical and in vitro metabolic stability evaluations showed that, except for the ester conjugate (1), the ketal (2b), acetal (2a), carbonate (4) and carbamate (3) conjugates were compatible with our approach. The acetal (2a) and its PEGylated derivative (2c) were of particular interest for further in vivo development owing to their respective pH-dependent stability and limited metabolic degradation in order to exploit the acidic subcellular environment of malignant melanocytes to trigger the release of therapeutics upon internalization in cells.


Asunto(s)
Antineoplásicos/síntesis química , Sistemas de Liberación de Medicamentos , Idoxuridina/análogos & derivados , Melanoma/tratamiento farmacológico , Acetales/síntesis química , Acetales/química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Células Cultivadas , Estabilidad de Medicamentos , Humanos , Idoxuridina/síntesis química , Idoxuridina/química , Estructura Molecular , Quinoxalinas/química
16.
J Med Chem ; 66(4): 2477-2497, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36780426

RESUMEN

Phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) are a new family of antimitotic prodrugs bioactivated in breast cancer cells expressing CYP1A1. In this study, we report that the 14C-labeled prototypical PAIB-SO [14C]CEU-818 and its antimitotic counterpart [14C]CEU-602 are distributed in whole mouse body and they show a short half-life in mice. To circumvent this limitation, we evaluated the effect of the homologation of the alkyl side chain of the imidazolidin-2-one moiety of PAIB-SOs. Our studies evidence that PAIB-SOs bearing an n-pentyl side chain exhibit antiproliferative activity in the nanomolar-to-low-micromolar range and a high selectivity toward CYP1A1-positive breast cancer cells. Moreover, the most potent n-pentyl PAIB-SOs were significantly more stable toward rodent liver microsomes. In addition, PAIB-SOs 10 and 14 show significant antitumor activity and low toxicity in chorioallantoic membrane (CAM) assay. Our study confirms that homologation is a suitable approach to improve the rodent hepatic stability of PAIB-SOs.


Asunto(s)
Antimitóticos , Neoplasias , Profármacos , Ratones , Animales , Antimitóticos/química , Profármacos/química , Citocromo P-450 CYP1A1 , Roedores , Microsomas Hepáticos , Bencenosulfonatos/química
17.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36876343

RESUMEN

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Asunto(s)
Neoplasias , Radioinmunoterapia , Animales , Ratones , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Netrina-1/metabolismo
18.
Invest New Drugs ; 30(4): 1782-90, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21499733

RESUMEN

Cartilage tumours present ongoing therapeutic challenges due to their chondrogenic extracellular matrix that potentially hampers drug delivery, their low percentage of dividing cells, and their poor vascularity. In this context, and based on the affinity of the quaternary ammonium moiety for proteoglycans (PG), we developed a strategy that uses the quaternary ammonium function to selectively deliver DNA alkylating agents to the cartilage tumour tissue. We engineered the quaternary ammonium derivative of melphalan (Mel-AQ) and assessed its antitumoural activity in vitro and in vivo. In vitro, micromolar concentrations of Mel-AQ inhibited the proliferation of human HEMC-SS chondrosarcoma and Saos-2 osteosarcoma cell lines. Moreover, 24-h incubation with 20 µM Mel-AQ induced a 2.5-fold increase in S population and a 1.5-fold increase in subG0G1 population compared to controls. In vivo, Mel-AQ demonstrated antitumour activity in the orthotopic model of primary Swarm rat chondrosarcoma. When given to chondrosarcoma-bearing rats (three doses of 16 µmol/kg at days 8, 12 and 16 post-implant), Mel-AQ demonstrated an optimal antitumour effect at day 43, when tumour cell growth inhibition peaked at 69%. Interestingly, the treatment protocol was proved well tolerated, since the animals showed no weight loss over the course of the study. This antitumoural effect was assessed in vivo by scintigraphic imaging using (99m)Tc-NTP 15-5 developed in our lab as a PG-targeting radiotracer, and tumour tissue was analyzed at study-end by biochemical PG assay with Alcian blue staining. Mel-AQ treatment led to a significant decrease in the PG content of tumoural tissue. These experimental results highlighted the promising antitumour potential of Mel-AQ as a PG-targeting strategy for therapeutic management of chondrosarcoma.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Condrosarcoma/tratamiento farmacológico , Melfalán/análogos & derivados , Compuestos de Amonio Cuaternario/uso terapéutico , Animales , Antineoplásicos Alquilantes/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Condrosarcoma/patología , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Melfalán/química , Melfalán/farmacología , Melfalán/uso terapéutico , Proteoglicanos/metabolismo , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Ratas , Ratas Sprague-Dawley
19.
Eur J Nucl Med Mol Imaging ; 39(9): 1449-61, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22707183

RESUMEN

PURPOSE: Here, we report a new and rapid radiosynthesis of (18)F-N-[2-(diethylamino)ethyl]-6-fluoro-pyridine-3-carboxamide ([(18)F]ICF01006), a molecule with a high specificity for melanotic tissue, and its evaluation in a murine model for early specific detection of pigmented primary and disseminated melanoma. METHODS: [(18)F]ICF01006 was synthesized using a new one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumour) or intravenous (lung colonies) injection of B16BL6 melanoma cells in C57BL/6J mice. The relevance and sensitivity of positron emission tomography (PET) imaging using [(18)F]ICF01006 were evaluated at different stages of tumoural growth and compared to (18)F-fluorodeoxyglucose ([(18)F]FDG). RESULTS: The fully automated radiosynthesis of [(18)F]ICF01006 led to a radiochemical yield of 61 % and a radiochemical purity >99 % (specific activity 70-80 GBq/µmol; total synthesis time 42 min). Tumours were visualized before they were palpable as early as 1 h post-injection with [(18)F]ICF01006 tumoural uptake of 1.64 ± 0.57, 3.40 ± 1.47 and 11.44 ± 2.67 percentage of injected dose per gram of tissue (%ID/g) at days 3, 5 and 14, respectively. [(18)F]ICF01006 PET imaging also allowed detection of melanoma pulmonary colonies from day 9 after tumour cell inoculation, with a lung radiotracer accumulation correlated with melanoma invasion. At day 21, radioactivity uptake in lungs reached a value of 5.23 ± 2.08 %ID/g (versus 0.41 ± 0.90 %ID/g in control mice). In the two models, comparison with [(18)F]FDG showed that both radiotracers were able to detect melanoma lesions, but [(18)F]ICF01006 was superior in terms of contrast and specificity. CONCLUSION: Our promising results provide further preclinical data, reinforcing the excellent potential of [(18)F]ICF01006 PET imaging for early specific diagnosis and follow-up of melanin-positive disseminated melanoma.


Asunto(s)
Detección Precoz del Cáncer/métodos , Melanoma Experimental/diagnóstico por imagen , Niacinamida/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Animales , Transporte Biológico , Estudios Longitudinales , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacocinética , Trazadores Radiactivos , Radioquímica
20.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215275

RESUMEN

The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51-78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5-2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F- with 19-28% RCY d.c., high RCP (>98.9%), Am (20-107 GBq/µmol) and e.e. (>99%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA