Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Epilepsia ; 64(7): 1910-1924, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150937

RESUMEN

OBJECTIVE: Effective surgical treatment of drug-resistant epilepsy depends on accurate localization of the epileptogenic zone (EZ). High-frequency oscillations (HFOs) are potential biomarkers of the EZ. Previous research has shown that HFOs often occur within submillimeter areas of brain tissue and that the coarse spatial sampling of clinical intracranial electrode arrays may limit the accurate capture of HFO activity. In this study, we sought to characterize microscale HFO activity captured on thin, flexible microelectrocorticographic (µECoG) arrays, which provide high spatial resolution over large cortical surface areas. METHODS: We used novel liquid crystal polymer thin-film µECoG arrays (.76-1.72-mm intercontact spacing) to capture HFOs in eight intraoperative recordings from seven patients with epilepsy. We identified ripple (80-250 Hz) and fast ripple (250-600 Hz) HFOs using a common energy thresholding detection algorithm along with two stages of artifact rejection. We visualized microscale subregions of HFO activity using spatial maps of HFO rate, signal-to-noise ratio, and mean peak frequency. We quantified the spatial extent of HFO events by measuring covariance between detected HFOs and surrounding activity. We also compared HFO detection rates on microcontacts to simulated macrocontacts by spatially averaging data. RESULTS: We found visually delineable subregions of elevated HFO activity within each µECoG recording. Forty-seven percent of HFOs occurred on single 200-µm-diameter recording contacts, with minimal high-frequency activity on surrounding contacts. Other HFO events occurred across multiple contacts simultaneously, with covarying activity most often limited to a .95-mm radius. Through spatial averaging, we estimated that macrocontacts with 2-3-mm diameter would only capture 44% of the HFOs detected in our µECoG recordings. SIGNIFICANCE: These results demonstrate that thin-film microcontact surface arrays with both highresolution and large coverage accurately capture microscale HFO activity and may improve the utility of HFOs to localize the EZ for treatment of drug-resistant epilepsy.


Asunto(s)
Ondas Encefálicas , Epilepsia Refractaria , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/cirugía , Epilepsia/diagnóstico , Encéfalo , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/cirugía
2.
Proc Natl Acad Sci U S A ; 116(31): 15398-15406, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308234

RESUMEN

Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm2 In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices.

3.
Proc Natl Acad Sci U S A ; 115(41): E9542-E9549, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30228119

RESUMEN

Materials and structures that enable long-term, intimate coupling of flexible electronic devices to biological systems are critically important to the development of advanced biomedical implants for biological research and for clinical medicine. By comparison with simple interfaces based on arrays of passive electrodes, the active electronics in such systems provide powerful and sometimes essential levels of functionality; they also demand long-lived, perfect biofluid barriers to prevent corrosive degradation of the active materials and electrical damage to the adjacent tissues. Recent reports describe strategies that enable relevant capabilities in flexible electronic systems, but only for capacitively coupled interfaces. Here, we introduce schemes that exploit patterns of highly doped silicon nanomembranes chemically bonded to thin, thermally grown layers of SiO2 as leakage-free, chronically stable, conductively coupled interfaces. The results can naturally support high-performance, flexible silicon electronic systems capable of amplified sensing and active matrix multiplexing in biopotential recording and in stimulation via Faradaic charge injection. Systematic in vitro studies highlight key considerations in the materials science and the electrical designs for high-fidelity, chronic operation. The results provide a versatile route to biointegrated forms of flexible electronics that can incorporate the most advanced silicon device technologies with broad applications in electrical interfaces to the brain and to other organ systems.


Asunto(s)
Fenómenos Electrofisiológicos , Modelos Neurológicos , Silicio , Electrodos
4.
Proc Natl Acad Sci U S A ; 113(42): 11682-11687, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27791052

RESUMEN

Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 µm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants.


Asunto(s)
Líquidos Corporales , Electrónica Médica , Dióxido de Silicio , Simulación por Computador , Electricidad , Modelos Teóricos , Dióxido de Silicio/química , Temperatura
5.
Commun Biol ; 7(1): 263, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438529

RESUMEN

Spreading depolarizations (SDs) are widely recognized as a major contributor to the progression of tissue damage from ischemic stroke even if blood flow can be restored. They are characterized by negative intracortical waveforms of up to -20 mV, propagation velocities of 3 - 6 mm/min, and massive disturbance of membrane ion homeostasis. High-density, micro-electrocorticographic (µECoG) epidural electrodes and custom, DC-coupled, multiplexed amplifiers, were used to continuously characterize and monitor SD and µECoG cortical signal evolution in awake, moving rats over days. This highly innovative approach can define these events over a large brain surface area (~ 3.4 × 3.4 mm), extending across the boundaries of the stroke, and offers sufficient electrode density (60 contacts total per array for a density of 5.7 electrodes / mm2) to measure and determine the origin of SDs in relation to the infarct boundaries. In addition, spontaneous ECoG activity can simultaneously be detected to further define cortical infarct regions. This technology allows us to understand dynamic stroke evolution and provides immediate cortical functional activity over days. Further translational development of this approach may facilitate improved treatment options for acute stroke patients.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Animales , Ratas , Vigilia , Electrocorticografía , Infarto
6.
Artículo en Inglés | MEDLINE | ID: mdl-37692908

RESUMEN

Techniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.3 × 0.3 mm2 area, unprecedentedly on a flexible substrate. A novel single-transistor multiplexing acquisition circuit further reduces noise from the electrodes, decreased the footprint of each pixel, and potentially increased the device lifetime. The filamentary neuroelectronic array also integrates with a rollable contact pad design, allowing the device to be injected through a syringe, enabling potential minimally invasive array delivery. Successful acute auditory experiments in rats validate the ability of the array to record neural signals with high tone decoding accuracy. Together, these results establish soft, high-density neuroelectronic arrays as promising devices for neuroscience research and clinical applications.

7.
Nat Commun ; 14(1): 6938, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932250

RESUMEN

Patients suffering from debilitating neurodegenerative diseases often lose the ability to communicate, detrimentally affecting their quality of life. One solution to restore communication is to decode signals directly from the brain to enable neural speech prostheses. However, decoding has been limited by coarse neural recordings which inadequately capture the rich spatio-temporal structure of human brain signals. To resolve this limitation, we performed high-resolution, micro-electrocorticographic (µECoG) neural recordings during intra-operative speech production. We obtained neural signals with 57× higher spatial resolution and 48% higher signal-to-noise ratio compared to macro-ECoG and SEEG. This increased signal quality improved decoding by 35% compared to standard intracranial signals. Accurate decoding was dependent on the high-spatial resolution of the neural interface. Non-linear decoding models designed to utilize enhanced spatio-temporal neural information produced better results than linear techniques. We show that high-density µECoG can enable high-quality speech decoding for future neural speech prostheses.


Asunto(s)
Interfaces Cerebro-Computador , Habla , Humanos , Calidad de Vida , Electrocorticografía/métodos , Comunicación , Encéfalo
8.
Artículo en Inglés | MEDLINE | ID: mdl-35898702

RESUMEN

Simultaneous interrogation of electrical signals from wide areas of the brain is vital for neuroscience research and can aid in understanding the mechanisms of brain function and treatments for neurological disorders. There emerges a demand for development of devices with highly conformal interfaces that can span large cortical regions, have sufficient spatial resolution, and chronic recording capability while keeping a small implantation footprint. In this work, we have designed 61 channel and 48 channel high-density, cortical, micro-electrocorticographic electrode arrays with 400 µm pitch on an ultra-soft but durable substrate. We have also developed a custom multiplexing integrated circuit (IC), methods for packaging the IC in a water-tight liquid crystal polymer casing, and a micro-bonding method for attaching the electronics package to the electrode array. With the integrated multiplexer, the number of external wire connections can be reduced to 16 wires, thereby diminishing the invasive footprint of the device. Both the electrode array and IC were tested in vivo in a rat model to demonstrate the ability to sense finely-localized electrophysiological signals.

9.
J Neural Eng ; 19(4)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35882223

RESUMEN

Objective.The force that an electrocorticography (ECoG) array exerts on the brain manifests when it bends to match the curvature of the skull and cerebral cortex. This force can negatively impact both short-term and long-term patient outcomes. Here we provide a mechanical characterization of a novel liquid crystal polymer (LCP) ECoG array prototype to demonstrate that its thinner geometry reduces the force potentially applied to the cortex of the brain.Approach.We built a low-force flexural testing machine to measure ECoG array bending forces, calculate their effective flexural moduli, and approximate the maximum force they could exerted on the human brain.Main results.The LCP ECoG prototype was found to have a maximal force less than 20% that of any commercially available ECoG arrays that were tested. However, as a material, LCP was measured to be as much as 24× more rigid than silicone, which is traditionally used in ECoG arrays. This suggests that the lower maximal force resulted from the prototype's thinner profile (2.9×-3.25×).Significance.While decreasing material stiffness can lower the force an ECoG array exhibits, our LCP ECoG array prototype demonstrated that flexible circuit manufacturing techniques can also lower these forces by decreasing ECoG array thickness. Flexural tests of ECoG arrays are necessary to accurately assess these forces, as material properties for polymers and laminates are often scale dependent. As the polymers used are anisotropic, elastic modulus cannot be used to predict ECoG flexural behavior. Accounting for these factors, we used our four-point flexure testing procedure to quantify the forces exerted on the brain by ECoG array bending. With this experimental method, ECoG arrays can be designed to minimize force exerted on the brain, potentially improving both acute and chronic clinical utility.


Asunto(s)
Corteza Cerebral , Electrocorticografía , Encéfalo , Humanos , Polímeros , Cráneo
10.
Brain Commun ; 4(3): fcac122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663384

RESUMEN

One-third of epilepsy patients suffer from medication-resistant seizures. While surgery to remove epileptogenic tissue helps some patients, 30-70% of patients continue to experience seizures following resection. Surgical outcomes may be improved with more accurate localization of epileptogenic tissue. We have previously developed novel thin-film, subdural electrode arrays with hundreds of microelectrodes over a 100-1000 mm2 area to enable high-resolution mapping of neural activity. Here, we used these high-density arrays to study microscale properties of human epileptiform activity. We performed intraoperative micro-electrocorticographic recordings in nine patients with epilepsy. In addition, we recorded from four patients with movement disorders undergoing deep brain stimulator implantation as non-epileptic controls. A board-certified epileptologist identified microseizures, which resembled electrographic seizures normally observed with clinical macroelectrodes. Recordings in epileptic patients had a significantly higher microseizure rate (2.01 events/min) than recordings in non-epileptic subjects (0.01 events/min; permutation test, P = 0.0068). Using spatial averaging to simulate recordings from larger electrode contacts, we found that the number of detected microseizures decreased rapidly with increasing contact diameter and decreasing contact density. In cases in which microseizures were spatially distributed across multiple channels, the approximate onset region was identified. Our results suggest that micro-electrocorticographic electrode arrays with a high density of contacts and large coverage are essential for capturing microseizures in epilepsy patients and may be beneficial for localizing epileptogenic tissue to plan surgery or target brain stimulation.

11.
Circ Arrhythm Electrophysiol ; 15(3): e010630, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35238622

RESUMEN

BACKGROUND: Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT. METHODS: We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics. RESULTS: We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions (P=0.003), whereas acetylcholine (100 µM) stimulation alone had no effect on action potential duration at 80% repolarization or premature ventricular contractions. However, acetylcholine treatment after isoproterenol stimulation reduced the incidence of premature ventricular contractions (P=0.034) and partially reversed action potential duration at 80% repolarization shortening (P=0.029). Immunolabeling of RVOT (n=4) confirmed the presence of cholinergic marker VAChT (vesicular acetylcholine transporter) in the region. Rapid pacing revealed RVOT susceptibility to both concordant and discordant alternans. Investigation into transmural arrhythmia dynamics showed that arrhythmia wave fronts and phase singularities (rotors) were relatively more organized in the endocardium than in the epicardium (P=0.006). Moreover, there was a weak but positive spatiotemporal autocorrelation between epicardial and endocardial arrhythmic wave fronts and rotors. Transcriptome analysis (n=10 hearts) suggests a trend that MAPK (mitogen-activated protein kinase) signaling, calcium signaling, and cGMP-PKG (protein kinase G) signaling are among the pathways that may be enriched in the male RVOT, whereas pathways of neurodegeneration may be enriched in the female RVOT. CONCLUSIONS: Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.


Asunto(s)
Taquicardia Ventricular , Complejos Prematuros Ventriculares , Acetilcolina/farmacología , Adrenérgicos , Electrofisiología Cardíaca , Colinérgicos , Electrocardiografía , Femenino , Ventrículos Cardíacos , Derechos Humanos , Humanos , Isoproterenol/farmacología , Masculino , Pericardio , Taquicardia Ventricular/etiología
12.
J Neural Eng ; 18(3)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33326943

RESUMEN

Objective. Large channel count surface-based electrophysiology arrays (e.g. µECoG) are high-throughput neural interfaces with good chronic stability. Electrode spacing remains ad hoc due to redundancy and nonstationarity of field dynamics. Here, we establish a criterion for electrode spacing based on the expected accuracy of predicting unsampled field potential from sampled sites.Approach. We applied spatial covariance modeling and field prediction techniques based on geospatial kriging to quantify sufficient sampling for thousands of 500 ms µECoG snapshots in human, monkey, and rat. We calculated a probably approximately correct (PAC) spacing based on kriging that would be required to predict µECoG fields at≤10% error for most cases (95% of observations).Main results. Kriging theory accurately explained the competing effects of electrode density and noise on predicting field potential. Across five frequency bands from 4-7 to 75-300 Hz, PAC spacing was sub-millimeter for auditory cortex in anesthetized and awake rats, and posterior superior temporal gyrus in anesthetized human. At 75-300 Hz, sub-millimeter PAC spacing was required in all species and cortical areas.Significance. PAC spacing accounted for the effect of signal-to-noise on prediction quality and was sensitive to the full distribution of non-stationary covariance states. Our results show that µECoG arrays should sample at sub-millimeter resolution for applications in diverse cortical areas and for noise resilience.


Asunto(s)
Corteza Auditiva , Electrocorticografía , Animales , Electrodos Implantados , Haplorrinos , Humanos , Ratas , Análisis Espacial
13.
J Neural Eng ; 18(4)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34010815

RESUMEN

Objective.Brain functions such as perception, motor control, learning, and memory arise from the coordinated activity of neuronal assemblies distributed across multiple brain regions. While major progress has been made in understanding the function of individual neurons, circuit interactions remain poorly understood. A fundamental obstacle to deciphering circuit interactions is the limited availability of research tools to observe and manipulate the activity of large, distributed neuronal populations in humans. Here we describe the development, validation, and dissemination of flexible, high-resolution, thin-film (TF) electrodes for recording neural activity in animals and humans.Approach.We leveraged standard flexible printed-circuit manufacturing processes to build high-resolution TF electrode arrays. We used biocompatible materials to form the substrate (liquid crystal polymer; LCP), metals (Au, PtIr, and Pd), molding (medical-grade silicone), and 3D-printed housing (nylon). We designed a custom, miniaturized, digitizing headstage to reduce the number of cables required to connect to the acquisition system and reduce the distance between the electrodes and the amplifiers. A custom mechanical system enabled the electrodes and headstages to be pre-assembled prior to sterilization, minimizing the setup time required in the operating room. PtIr electrode coatings lowered impedance and enabled stimulation. High-volume, commercial manufacturing enables cost-effective production of LCP-TF electrodes in large quantities.Main Results. Our LCP-TF arrays achieve 25× higher electrode density, 20× higher channel count, and 11× reduced stiffness than conventional clinical electrodes. We validated our LCP-TF electrodes in multiple human intraoperative recording sessions and have disseminated this technology to >10 research groups. Using these arrays, we have observed high-frequency neural activity with sub-millimeter resolution.Significance.Our LCP-TF electrodes will advance human neuroscience research and improve clinical care by enabling broad access to transformative, high-resolution electrode arrays.


Asunto(s)
Materiales Biocompatibles , Encéfalo , Animales , Impedancia Eléctrica , Electrodos , Electrodos Implantados , Humanos , Neuronas
14.
J Neural Eng ; 17(4): 046008, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32498058

RESUMEN

OBJECTIVE: A fundamental goal of the auditory system is to parse the auditory environment into distinct perceptual representations. Auditory perception is mediated by the ventral auditory pathway, which includes the ventrolateral prefrontal cortex (vlPFC). Because large-scale recordings of auditory signals are quite rare, the spatiotemporal resolution of the neuronal code that underlies vlPFC's contribution to auditory perception has not been fully elucidated. Therefore, we developed a modular, chronic, high-resolution, multi-electrode array system with long-term viability in order to identify the information that could be decoded from µECoG vlPFC signals. APPROACH: We molded three separate µECoG arrays into one and implanted this system in a non-human primate. A custom 3D-printed titanium chamber was mounted on the left hemisphere. The molded 294-contact µECoG array was implanted subdurally over the vlPFC. µECoG activity was recorded while the monkey participated in a 'hearing-in-noise' task in which they reported hearing a 'target' vocalization from a background 'chorus' of vocalizations. We titrated task difficulty by varying the sound level of the target vocalization, relative to the chorus (target-to-chorus ratio, TCr). MAIN RESULTS: We decoded the TCr and the monkey's behavioral choices from the µECoG signal. We analyzed decoding accuracy as a function of number of electrodes, spatial resolution, and time from implantation. Over a one-year period, we found significant decoding with individual electrodes that increased significantly as we decoded simultaneously more electrodes. Further, we found that the decoding for behavioral choice was better than the decoding of TCr. Finally, because the decoding accuracy of individual electrodes varied on a day-by-day basis, electrode arrays with high channel counts ensure robust decoding in the long term. SIGNIFICANCE: Our results demonstrate the utility of high-resolution and high-channel-count, chronic µECoG recording. We developed a surface electrode array that can be scaled to cover larger cortical areas without increasing the chamber footprint.


Asunto(s)
Corteza Auditiva , Macaca , Animales , Percepción Auditiva , Corteza Cerebral , Cognición , Electrodos
15.
Sci Transl Med ; 12(538)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269166

RESUMEN

Long-lasting, high-resolution neural interfaces that are ultrathin and flexible are essential for precise brain mapping and high-performance neuroprosthetic systems. Scaling to sample thousands of sites across large brain regions requires integrating powered electronics to multiplex many electrodes to a few external wires. However, existing multiplexed electrode arrays rely on encapsulation strategies that have limited implant lifetimes. Here, we developed a flexible, multiplexed electrode array, called "Neural Matrix," that provides stable in vivo neural recordings in rodents and nonhuman primates. Neural Matrix lasts over a year and samples a centimeter-scale brain region using over a thousand channels. The long-lasting encapsulation (projected to last at least 6 years), scalable device design, and iterative in vivo optimization described here are essential components to overcoming current hurdles facing next-generation neural technologies.


Asunto(s)
Mapeo Encefálico , Roedores , Animales , Encéfalo , Electrodos Implantados , Microelectrodos , Primates
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5057-5060, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441477

RESUMEN

Micro-electrocorticography (µECoG) is a minimally invasive neural interface that allows for recording from the surface of the brain with high spatial and temporal resolution [1], [2]. However, discerning multi-unit and local field potential (LFP) activity with potentially highly-correlated signals across a dense µECoG array can be challenging. Here we describe a novel µECoG design to compare the effect of referencing recordings to a local reference electrode and common average referencing (CAR). The filtering effect and the significant increase in signal to noise ratio of the evoked response (ESNR) can be seen after re-referencing for both types of referencing. In a preliminary analysis, re-referencing the µECoG signals can increase recording performance at high contact densities in the auditory cortex. This also provides promising evidence for a versatile in-house fabricated µECoG electrode.


Asunto(s)
Mapeo Encefálico , Electrocorticografía , Encéfalo , Electrodos Implantados , Humanos , Microelectrodos
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4591-4594, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441374

RESUMEN

Chronic studies of flexible µECoG electrodes and the electrode-brain interface have been limited by the inability to assess tissue response over time. The electrophysiological system presented here combines epidural microelectrocorticographic (µECoG) recording capabilities with the ability to visualize tissue response over time through light microscopy and optical coherence tomography (OCT). With the ability to interchange both the electrode and the electronics, and a flushing port for injection of flushing saline and/or drugs, this 3D printed system has future applications in chronic electrophysiology, optogenetics, and advanced imaging methods.


Asunto(s)
Encéfalo/diagnóstico por imagen , Electrocorticografía/instrumentación , Electrodos Implantados , Impresión Tridimensional , Animales , Fenómenos Electrofisiológicos , Femenino , Optogenética , Ratas Sprague-Dawley , Tomografía de Coherencia Óptica
18.
J Neural Eng ; 15(6): 066024, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30246690

RESUMEN

OBJECTIVE: The clinical use of microsignals recorded over broad cortical regions is largely limited by the chronic reliability of the implanted interfaces. APPROACH: We evaluated the chronic reliability of novel 61-channel micro-electrocorticographic (µECoG) arrays in rats chronically implanted for over one year and using accelerated aging. Devices were encapsulated with polyimide (PI) or liquid crystal polymer (LCP), and fabricated using commercial manufacturing processes. In vitro failure modes and predicted lifetimes were determined from accelerated soak testing. Successful designs were implanted epidurally over the rodent auditory cortex. Trends in baseline signal level, evoked responses and decoding performance were reported for over one year of implantation. MAIN RESULTS: Devices fabricated with LCP consistently had longer in vitro lifetimes than PI encapsulation. Our accelerated aging results predicted device integrity beyond 3.4 years. Five implanted arrays showed stable performance over the entire implantation period (247-435 d). Our regression analysis showed that impedance predicted signal quality and information content only in the first 31 d of recordings and had little predictive value in the chronic phase (>31 d). In the chronic phase, site impedances slightly decreased yet decoding performance became statistically uncorrelated with impedance. We also employed an improved statistical model of spatial variation to measure sensitivity to locally varying fields, which is typically concealed in standard signal power calculations. SIGNIFICANCE: These findings show that µECoG arrays can reliably perform in chronic applications in vivo for over one year, which facilitates the development of a high-density, clinically viable interface.


Asunto(s)
Electrocorticografía/métodos , Polímeros , Estimulación Acústica , Algoritmos , Animales , Corteza Auditiva , Interfaces Cerebro-Computador , Impedancia Eléctrica , Electrodos Implantados , Espacio Epidural , Femenino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Relación Señal-Ruido
19.
Artículo en Inglés | MEDLINE | ID: mdl-28804678

RESUMEN

Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin, leakage-free, biocompatible dielectric layer can completely seal an underlying layer of flexible electronics while allowing for electrophysiological measurements through capacitive coupling between tissue and the electronics, and thus without the need for direct metal contact. The resulting current-leakage levels and operational lifetimes are, respectively, four orders of magnitude smaller and between two and three orders of magnitude longer than those of any other flexible-electronics technology. Systematic electrophysiological studies with normal, paced and arrhythmic conditions in Langendorff hearts highlight the capabilities of the capacitive-coupling approach. Our technology provides a realistic pathway towards the broad applicability of biocompatible, flexible electronic implants.

20.
J Neural Eng ; 13(2): 026030-26030, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26975462

RESUMEN

OBJECTIVE: Micro-electrocorticography (µECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely behaving rodents challenging. We report a novel high-density 60-electrode system for µECoG recording in freely moving rats. APPROACH: Multiplexed headstages overcome the problem of wiring complexity by combining signals from many electrodes to a smaller number of connections. We have developed a low-cost, multiplexed recording system with 60 contacts at 406 µm spacing. We characterized the quality of the electrode signals using multiple metrics that tracked spatial variation, evoked-response detectability, and decoding value. Performance of the system was validated both in anesthetized animals and freely moving awake animals. MAIN RESULTS: We recorded µECoG signals over the primary auditory cortex, measuring responses to acoustic stimuli across all channels. Single-trial responses had high signal-to-noise ratios (SNR) (up to 25 dB under anesthesia), and were used to rapidly measure network topography within ∼10 s by constructing all single-channel receptive fields in parallel. We characterized evoked potential amplitudes and spatial correlations across the array in the anesthetized and awake animals. Recording quality in awake animals was stable for at least 30 days. Finally, we used these responses to accurately decode auditory stimuli on single trials. SIGNIFICANCE: This study introduces (1) a µECoG recording system based on practical hardware design and (2) a rigorous analytical method for characterizing the signal characteristics of µECoG electrode arrays. This methodology can be applied to evaluate the fidelity and lifetime of any µECoG electrode array. Our µECoG-based recording system is accessible and will be useful for studies of perception and decision-making in rodents, particularly over the entire time course of behavioral training and learning.


Asunto(s)
Electrocorticografía/economía , Electrocorticografía/métodos , Electrodos Implantados/economía , Locomoción/fisiología , Animales , Masculino , Microelectrodos/economía , Movimiento/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA