Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 25(14): 1470-5, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21764851

RESUMEN

Small cell lung cancer (SCLC) is an aggressive cancer often diagnosed after it has metastasized. Despite the need to better understand this disease, SCLC remains poorly characterized at the molecular and genomic levels. Using a genetically engineered mouse model of SCLC driven by conditional deletion of Trp53 and Rb1 in the lung, we identified several frequent, high-magnitude focal DNA copy number alterations in SCLC. We uncovered amplification of a novel, oncogenic transcription factor, Nuclear factor I/B (Nfib), in the mouse SCLC model and in human SCLC. Functional studies indicate that NFIB regulates cell viability and proliferation during transformation.


Asunto(s)
Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Oncogenes/fisiología , Carcinoma Pulmonar de Células Pequeñas/genética , Animales , Animales Modificados Genéticamente , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Oncogenes/genética
2.
Nature ; 473(7345): 101-4, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21471965

RESUMEN

Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS and inactivation of the p53 pathway, using conditional alleles in mice. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras(LSL-G12D/+);p53(flox/flox) mice initiates lung adenocarcinoma development. Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga2. Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same tumour type substantiate its role as a dual function lineage factor.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/fisiopatología , Adenocarcinoma del Pulmón , Animales , Diferenciación Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo , Proteína HMGA2/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Ratones , Factor Nuclear Tiroideo 1
3.
J Hepatol ; 65(2): 296-304, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27130844

RESUMEN

BACKGROUND & AIMS: The purpose of this study was to determine whether biomarkers from baseline plasma and archival tissue specimens collected from patients enrolled in the EVOLVE-1 trial - a randomized phase 3 study of everolimus in hepatocellular carcinoma (HCC) - were associated with prognosis, etiology or ethnicity. METHODS: Circulating plasma levels of bFGF, PLGF, VEGF, VEGF-D, c-Kit, collagen IV, sVEGFR1 and VEGFR2 were measured by ELISA (N=503). Protein levels of IGF-1R, c-Met, mTOR, Tsc2 were assayed by immunohistochemistry (N=125). Genomic DNA sequencing was conducted on a panel of 287 cancer-related genes (N=69). RESULTS: Patients with baseline plasma concentrations of VEGF or sVEGFR1 above the cohort median had significantly shorter overall survival. These plasma biomarkers retained prognostic significance in a multivariate Cox regression model with geographic region, macroscopic vascular invasion and alpha fetoprotein AFP levels. Membranous c-Met protein levels were significantly lower for Asian patients, as well as for hepatitis B viral etiology. The prevalence of genetic changes were similar to previous reports, along with a trend towards higher PTEN and TSC2 mutations among Asians. CONCLUSIONS: The angiogenesis biomarkers VEGF and sVEGFR1 were independent prognostic predictors of survival in patients with advanced HCC. Potential differences in c-Met and mTOR pathway activation between Asian and non-Asian patients should be considered in future clinical trials. LAY SUMMARY: Our study demonstrates that circulating angiogenesis biomarkers can predict the survival outcome in patients with advanced hepatocellular carcinoma independent of the clinical variables. There is etiology and ethnicity variation in molecular pathway activation in hepatocellular carcinoma, which should be considered for future clinical trial design of targeted therapy. CLINICAL TRIAL REGISTRATION NUMBER: NCT01035229.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor , Humanos , Proteínas Proto-Oncogénicas c-met , Factor D de Crecimiento Endotelial Vascular
4.
Genome Res ; 23(3): 519-29, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23204306

RESUMEN

High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is conditional on the development of effective computational methods for the identification and quantification of transcripts from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation of their abundances. Our probabilistic approach incorporates multiple biological and technical phenomena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and multimapped reads. iReckon utilizes regularized expectation-maximization to accurately estimate the abundances of known and novel isoforms. Our results on simulated and real data demonstrate a superior ability to discover novel isoforms with a significantly reduced number of false-positive predictions, and our abundance accuracy prediction outmatches that of other state-of-the-art tools. Furthermore, we have applied iReckon to two cancer transcriptome data sets, a triple-negative breast cancer patient sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in the MCF7 cell line confirmed all of iReckon's predictions and also showed strong agreement (r(2) = 0.94) with the predicted abundances.


Asunto(s)
Algoritmos , Simulación por Computador , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Empalme del ARN , Análisis de Secuencia de ARN/métodos , Femenino , Humanos , Células MCF-7 , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Nature ; 463(7283): 899-905, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20164920

RESUMEN

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen/genética , Neoplasias/genética , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Amplificación de Genes/genética , Genómica , Humanos , Familia de Multigenes/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neoplasias/clasificación , Neoplasias/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal , Proteína bcl-X/genética
6.
Nucleic Acids Res ; 41(2): e39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23155066

RESUMEN

The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice.


Asunto(s)
Empalme Alternativo , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Femenino , Genoma Humano , Humanos , Pulmón/citología , Pulmón/metabolismo , Programas Informáticos , Transcriptoma
7.
Hepatology ; 58(5): 1693-702, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23728943

RESUMEN

UNLABELLED: Genetic alterations in specific driver genes lead to disruption of cellular pathways and are critical events in the instigation and progression of hepatocellular carcinoma (HCC). As a prerequisite for individualized cancer treatment, we sought to characterize the landscape of recurrent somatic mutations in HCC. We performed whole-exome sequencing on 87 HCCs and matched normal adjacent tissues to an average coverage of 59×. The overall mutation rate was roughly two mutations per Mb, with a median of 45 nonsynonymous mutations that altered the amino acid sequence (range, 2-381). We found recurrent mutations in several genes with high transcript levels: TP53 (18%); CTNNB1 (10%); KEAP1 (8%); C16orf62 (8%); MLL4 (7%); and RAC2 (5%). Significantly affected gene families include the nucleotide-binding domain and leucine-rich repeat-containing family, calcium channel subunits, and histone methyltransferases. In particular, the MLL family of methyltransferases for histone H3 lysine 4 were mutated in 20% of tumors. CONCLUSION: The NFE2L2-KEAP1 and MLL pathways are recurrently mutated in multiple cohorts of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Exoma , Neoplasias Hepáticas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína 1 Asociada A ECH Tipo Kelch , Masculino , Persona de Mediana Edad , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Factor 2 Relacionado con NF-E2/genética , Análisis de Secuencia de ADN
8.
Curr Opin Gastroenterol ; 30(3): 295-302, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24569570

RESUMEN

PURPOSE OF REVIEW: Exome sequencing studies have recently expanded the genetic characterization of intrahepatic cholangiocarcinomas. Among a number of novel genes, isocitrate dehydrogenase (IDH) is recurrently mutated in intrahepatic cholangiocarcinomas. We review the effects of these mutations on several biochemical pathways, as well as potential changes to downstream signaling pathways. RECENT FINDINGS: Hotspot mutations in IDH isoforms 1 or 2 occur in approximately 15% of intrahepatic cholangiocarcinomas. These mutations result in elevated levels of an oncometabolite, 2-hydroxyglutarate, which is associated with higher DNA CpG methylation and altered histone methylation that accompany a block in cellular differentiation. Exploratory studies have suggested additional phenotypes associated with IDH1/2 mutations. SUMMARY: Tumors with IDH1 or IDH2 mutations may represent a distinct subtype of cholangiocarcinomas. Further studies are required to elucidate the exact role that mutant IDH1/2 and 2-hydroxyglutarate play in tumorigenesis, and what are the best strategies to target these tumor types.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Colangiocarcinoma/genética , Isocitrato Deshidrogenasa/genética , Neoplasias de los Conductos Biliares/patología , Diferenciación Celular/genética , Colangiocarcinoma/patología , Metilación de ADN , Glutaratos/metabolismo , Humanos , Mutación , Prolil Hidroxilasas/metabolismo , Transducción de Señal/genética
9.
Cancer Res ; 84(9): 1410-1425, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335304

RESUMEN

Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients. Among the mesenchymal cell subsets, FAP+PDPN+ cancer-associated fibroblasts (CAF) and ACTA2+MCAM+ pericytes were enriched in tumors and differentiated from lung-resident fibroblasts. Imaging mass cytometry revealed that both subsets were topographically adjacent to the perivascular niche and had close spatial interactions with endothelial cells (EC). Modeling of ligand and receptor interactomes between mesenchymal and ECs identified that NOTCH signaling drives these cell-to-cell interactions in tumors, with pericytes and CAFs as the signal receivers and arterial and PLVAPhigh immature neovascular ECs as the signal senders. Either pharmacologically blocking NOTCH signaling or genetically depleting NOTCH3 levels in mesenchymal cells significantly reduced collagen production and suppressed cell invasion. Bulk RNA sequencing data demonstrated that NOTCH3 expression correlated with poor survival in stroma-rich patients and that a T cell-inflamed gene signature only predicted survival in patients with low NOTCH3. Collectively, this study provides valuable insights into the role of NOTCH3 in regulating tumor stroma biology, warranting further studies to elucidate the clinical implications of targeting NOTCH3 signaling. SIGNIFICANCE: NOTCH3 signaling activates tumor-associated mesenchymal cells, increases collagen production, and augments cell invasion in lung adenocarcinoma, suggesting its critical role in remodeling tumor stroma.


Asunto(s)
Adenocarcinoma del Pulmón , Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Invasividad Neoplásica , Receptor Notch3 , Análisis de la Célula Individual , Células del Estroma , Microambiente Tumoral , Humanos , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Comunicación Celular , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Transducción de Señal , Células del Estroma/metabolismo , Células del Estroma/patología
10.
Nature ; 450(7171): 893-8, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-17982442

RESUMEN

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in approximately 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.


Asunto(s)
Adenocarcinoma/genética , Genoma Humano/genética , Neoplasias Pulmonares/genética , Neoplasias/genética , Línea Celular Tumoral , Deleción Cromosómica , Cromosomas Humanos Par 14/genética , Amplificación de Genes/genética , Genómica , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Pérdida de Heterocigocidad/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple/genética , Proto-Oncogenes Mas , Interferencia de ARN , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética
12.
Gastroenterology ; 140(5): 1618-28.e16, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21324318

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous tumor that develops via activation of multiple pathways and molecular alterations. It has been a challenge to identify molecular classes of HCC and design treatment strategies for each specific subtype. MicroRNAs (miRNAs) are involved in HCC pathogenesis, and their expression profiles have been used to classify cancers. We analyzed miRNA expression in human HCC samples to identify molecular subclasses and oncogenic miRNAs. METHODS: We performed miRNA profiling of 89 HCC samples using a ligation-mediated amplification method. Subclasses were identified by unsupervised clustering analysis. We identified molecular features specific for each subclass using expression pattern (Affymetrix U133 2.0; Affymetrix, Santa Clara, CA), DNA change (Affymetrix STY Mapping Array), mutation (CTNNB1), and immunohistochemical (phosphor[p]-protein kinase B, p-insulin growth factor-IR, p-S6, p-epidermal growth factor receptor, ß-catenin) analyses. The roles of selected miRNAs were investigated in cell lines and in an orthotopic model of HCC. RESULTS: We identified 3 main clusters of HCCs: the wingless-type MMTV integration site (32 of 89; 36%), interferon-related (29 of 89; 33%), and proliferation (28 of 89; 31%) subclasses. A subset of patients with tumors in the proliferation subclass (8 of 89; 9%) overexpressed a family of poorly characterized miRNAs from chr19q13.42. Expression of miR-517a and miR-520c (from ch19q13.42) increased proliferation, migration, and invasion of HCC cells in vitro. MiR-517a promoted tumorigenesis and metastatic dissemination in vivo. CONCLUSIONS: We propose miRNA-based classification of 3 subclasses of HCC. Among the proliferation class, miR-517a is an oncogenic miRNA that promotes tumor progression. There is rationale for developing therapies that target miR-517a for patients with HCC.


Asunto(s)
Carcinoma Hepatocelular/clasificación , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/clasificación , MicroARNs/genética , ARN Neoplásico/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/biosíntesis , Reacción en Cadena de la Polimerasa , Células Tumorales Cultivadas
13.
Nat Methods ; 6(1): 99-103, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19043412

RESUMEN

Cancer results from somatic alterations in key genes, including point mutations, copy-number alterations and structural rearrangements. A powerful way to discover cancer-causing genes is to identify genomic regions that show recurrent copy-number alterations (gains and losses) in tumor genomes. Recent advances in sequencing technologies suggest that massively parallel sequencing may provide a feasible alternative to DNA microarrays for detecting copy-number alterations. Here we present: (i) a statistical analysis of the power to detect copy-number alterations of a given size; (ii) SegSeq, an algorithm to segment equal copy numbers from massively parallel sequence data; and (iii) analysis of experimental data from three matched pairs of tumor and normal cell lines. We show that a collection of approximately 14 million aligned sequence reads from human cell lines has comparable power to detect events as the current generation of DNA microarrays and has over twofold better precision for localizing breakpoints (typically, to within approximately 1 kilobase).


Asunto(s)
Bases de Datos Genéticas , Dosificación de Gen/genética , Algoritmos , Secuencia de Bases , Línea Celular Tumoral , Cromosomas Humanos/genética , Humanos
14.
Bioinformatics ; 27(19): 2633-40, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21824971

RESUMEN

MOTIVATION: In eukaryotic cells, alternative splicing expands the diversity of RNA transcripts and plays an important role in tissue-specific differentiation, and can be misregulated in disease. To understand these processes, there is a great need for methods to detect differential transcription between samples. Our focus is on samples observed using short-read RNA sequencing (RNA-seq). METHODS: We characterize differential transcription between two samples as the difference in the relative abundance of the transcript isoforms present in the samples. The magnitude of differential transcription of a gene between two samples can be measured by the square root of the Jensen Shannon Divergence (JSD*) between the gene's transcript abundance vectors in each sample. We define a weighted splice-graph representation of RNA-seq data, summarizing in compact form the alignment of RNA-seq reads to a reference genome. The flow difference metric (FDM) identifies regions of differential RNA transcript expression between pairs of splice graphs, without need for an underlying gene model or catalog of transcripts. We present a novel non-parametric statistical test between splice graphs to assess the significance of differential transcription, and extend it to group-wise comparison incorporating sample replicates. RESULTS: Using simulated RNA-seq data consisting of four technical replicates of two samples with varying transcription between genes, we show that (i) the FDM is highly correlated with JSD* (r=0.82) when average RNA-seq coverage of the transcripts is sufficiently deep; and (ii) the FDM is able to identify 90% of genes with differential transcription when JSD* >0.28 and coverage >7. This represents higher sensitivity than Cufflinks (without annotations) and rDiff (MMD), which respectively identified 69 and 49% of the genes in this region as differential transcribed. Using annotations identifying the transcripts, Cufflinks was able to identify 86% of the genes in this region as differentially transcribed. Using experimental data consisting of four replicates each for two cancer cell lines (MCF7 and SUM102), FDM identified 1425 genes as significantly different in transcription. Subsequent study of the samples using quantitative real time polymerase chain reaction (qRT-PCR) of several differential transcription sites identified by FDM, confirmed significant differences at these sites. AVAILABILITY: http://csbio-linux001.cs.unc.edu/nextgen/software/FDM CONTACT: darshan@email.unc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme Alternativo , ARN/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Genoma , Humanos , Modelos Genéticos , Isoformas de Proteínas/genética , Transcripción Genética
15.
Biometrics ; 68(3): 774-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22260651

RESUMEN

DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology)71, 393-424) and propose modeling the nonnull using a nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites.


Asunto(s)
Biometría/métodos , Metilación de ADN , Modelos Estadísticos , Islas de CpG , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Epigénesis Genética , Humanos , Cadenas de Markov , Modelos Genéticos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Probabilidad
16.
Nucleic Acids Res ; 38(18): e178, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20802226

RESUMEN

The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥ 75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice.


Asunto(s)
Algoritmos , Empalme Alternativo , Sitios de Empalme de ARN , Análisis de Secuencia de ARN , Programas Informáticos , Neoplasias de la Mama/genética , Femenino , Perfilación de la Expresión Génica , Humanos
17.
Genome Biol ; 23(1): 265, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550535

RESUMEN

BACKGROUND: The tumor microenvironment (TME) has been shown to strongly influence treatment outcome for cancer patients in various indications and to influence the overall survival. However, the cells forming the TME in gastric cancer have not been extensively characterized. RESULTS: We combine bulk and single-cell RNA sequencing from tumors and matched normal tissue of 24 treatment-naïve GC patients to better understand which cell types and transcriptional programs are associated with malignant transformation of the stomach. Clustering 96,623 cells of non-epithelial origin reveals 81 well-defined TME cell types. We find that activated fibroblasts and endothelial cells are most prominently overrepresented in tumors. Intercellular network reconstruction and survival analysis of an independent cohort imply the importance of these cell types together with immunosuppressive myeloid cell subsets and regulatory T cells in establishing an immunosuppressive microenvironment that correlates with worsened prognosis and lack of response in anti-PD1-treated patients. In contrast, we find a subset of IFNγ activated T cells and HLA-II expressing macrophages that are linked to treatment response and increased overall survival. CONCLUSIONS: Our gastric cancer single-cell TME compendium together with the matched bulk transcriptome data provides a unique resource for the identification of new potential biomarkers for patient stratification. This study helps further to elucidate the mechanism of gastric cancer and provides insights for therapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Células Endoteliales , Microambiente Tumoral , Perfilación de la Expresión Génica , Transcriptoma , Análisis de la Célula Individual
18.
Mol Cancer Ther ; 21(3): 427-439, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965960

RESUMEN

Targeting the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway with immunotherapy has revolutionized the treatment of many cancers. Somatic tumor mutational burden (TMB) and T-cell-inflamed gene expression profile (GEP) are clinically validated pan-tumor genomic biomarkers that can predict responsiveness to anti-PD-1/PD-L1 monotherapy in many tumor types. We analyzed the association between these biomarkers and the efficacy of PD-1 inhibitor in 11 commonly used preclinical syngeneic tumor mouse models using murinized rat anti-mouse PD-1 DX400 antibody muDX400, a surrogate for pembrolizumab. Response to muDX400 treatment was broadly classified into three categories: highly responsive, partially responsive, and intrinsically resistant to therapy. Molecular and cellular profiling validated differences in immune cell infiltration and activation in the tumor microenvironment of muDX400-responsive tumors. Baseline and on-treatment genomic analysis showed an association between TMB, murine T-cell-inflamed gene expression profile (murine-GEP), and response to muDX400 treatment. We extended our analysis to investigate a canonical set of cancer and immune biology-related gene signatures, including signatures of angiogenesis, myeloid-derived suppressor cells, and stromal/epithelial-to-mesenchymal transition/TGFß biology previously shown to be inversely associated with the clinical efficacy of immune checkpoint blockade. Finally, we evaluated the association between murine-GEP and preclinical efficacy with standard-of-care chemotherapy or antiangiogenic agents that previously demonstrated promising clinical activity, in combination with muDX400. Our profiling studies begin to elucidate the underlying biological mechanisms of response and resistance to PD-1/PD-L1 blockade represented by these models, thereby providing insight into which models are most appropriate for the evaluation of orthogonal combination strategies.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microambiente Tumoral
19.
N Engl J Med ; 359(19): 1995-2004, 2008 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-18923165

RESUMEN

BACKGROUND: It is a challenge to identify patients who, after undergoing potentially curative treatment for hepatocellular carcinoma, are at greatest risk for recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissue. METHODS: We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed, paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. RESULTS: The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of tissue samples from 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (P=0.04). CONCLUSIONS: We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlated with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Hepáticas/genética , Recurrencia Local de Neoplasia/genética , Anciano , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Estudios de Factibilidad , Femenino , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Hígado/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Adhesión en Parafina/métodos , Reacción en Cadena de la Polimerasa , Pronóstico , Análisis de Supervivencia , Fijación del Tejido/métodos
20.
Bioinformatics ; 26(16): 1950-7, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20576625

RESUMEN

MOTIVATION: The RNA-seq paired-end read (PER) protocol samples transcript fragments longer than the sequencing capability of today's technology by sequencing just the two ends of each fragment. Deep sampling of the transcriptome using the PER protocol presents the opportunity to reconstruct the unsequenced portion of each transcript fragment using end reads from overlapping PERs, guided by the expected length of the fragment. METHODS: A probabilistic framework is described to predict the alignment to the genome of all PER transcript fragments in a PER dataset. Starting from possible exonic and spliced alignments of all end reads, our method constructs potential splicing paths connecting paired ends. An expectation maximization method assigns likelihood values to all splice junctions and assigns the most probable alignment for each transcript fragment. RESULTS: The method was applied to 2 x 35 bp PER datasets from cancer cell lines MCF-7 and SUM-102. PER fragment alignment increased the coverage 3-fold compared to the alignment of the end reads alone, and increased the accuracy of splice detection. The accuracy of the expectation maximization (EM) algorithm in the presence of alternative paths in the splice graph was validated by qRT-PCR experiments on eight exon skipping alternative splicing events. PER fragment alignment with long-range splicing confirmed 8 out of 10 fusion events identified in the MCF-7 cell line in an earlier study by (Maher et al., 2009). AVAILABILITY: Software available at http://www.netlab.uky.edu/p/bioinfo/MapSplice/PER.


Asunto(s)
ARN Mensajero/química , Alineación de Secuencia , Análisis de Secuencia de ARN/métodos , Algoritmos , Empalme Alternativo , Secuencia de Bases , Exones , Perfilación de la Expresión Génica , Genoma , Humanos , Probabilidad , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA