Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
N Engl J Med ; 390(1): 44-54, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169489

RESUMEN

BACKGROUND: Household air pollution is associated with stunted growth in infants. Whether the replacement of biomass fuel (e.g., wood, dung, or agricultural crop waste) with liquefied petroleum gas (LPG) for cooking can reduce the risk of stunting is unknown. METHODS: We conducted a randomized trial involving 3200 pregnant women 18 to 34 years of age in four low- and middle-income countries. Women at 9 to less than 20 weeks' gestation were randomly assigned to use a free LPG cookstove with continuous free fuel delivery for 18 months (intervention group) or to continue using a biomass cookstove (control group). The length of each infant was measured at 12 months of age, and personal exposures to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm) were monitored starting at pregnancy and continuing until the infants were 1 year of age. The primary outcome for which data are presented in the current report - stunting (defined as a length-for-age z score that was more than two standard deviations below the median of a growth standard) at 12 months of age - was one of four primary outcomes of the trial. Intention-to-treat analyses were performed to estimate the relative risk of stunting. RESULTS: Adherence to the intervention was high, and the intervention resulted in lower prenatal and postnatal 24-hour personal exposures to fine particulate matter than the control (mean prenatal exposure, 35.0 µg per cubic meter vs. 103.3 µg per cubic meter; mean postnatal exposure, 37.9 µg per cubic meter vs. 109.2 µg per cubic meter). Among 3061 live births, 1171 (76.2%) of the 1536 infants born to women in the intervention group and 1186 (77.8%) of the 1525 infants born to women in the control group had a valid length measurement at 12 months of age. Stunting occurred in 321 of the 1171 infants included in the analysis (27.4%) of the infants born to women in the intervention group and in 299 of the 1186 infants included in the analysis (25.2%) of those born to women in the control group (relative risk, 1.10; 98.75% confidence interval, 0.94 to 1.29; P = 0.12). CONCLUSIONS: An intervention strategy starting in pregnancy and aimed at mitigating household air pollution by replacing biomass fuel with LPG for cooking did not reduce the risk of stunting in infants. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Asunto(s)
Contaminación del Aire Interior , Petróleo , Lactante , Femenino , Humanos , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Biomasa , Material Particulado/efectos adversos , Material Particulado/análisis , Culinaria , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/etiología , Trastornos del Crecimiento/prevención & control
2.
N Engl J Med ; 387(19): 1735-1746, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214599

RESUMEN

BACKGROUND: Exposure during pregnancy to household air pollution caused by the burning of solid biomass fuel is associated with adverse health outcomes, including low birth weight. Whether the replacement of a biomass cookstove with a liquefied petroleum gas (LPG) cookstove would result in an increase in birth weight is unclear. METHODS: We performed a randomized, controlled trial involving pregnant women (18 to <35 years of age and at 9 to <20 weeks' gestation as confirmed on ultrasonography) in Guatemala, India, Peru, and Rwanda. The women were assigned in a 1:1 ratio to use a free LPG cookstove and fuel (intervention group) or to continue using a biomass cookstove (control group). Birth weight, one of four prespecified primary outcomes, was the primary outcome for this report; data for the other three outcomes are not yet available. Birth weight was measured within 24 hours after birth. In addition, 24-hour personal exposures to fine particulate matter (particles with a diameter of ≤2.5 µm [PM2.5]), black carbon, and carbon monoxide were measured at baseline and twice during pregnancy. RESULTS: A total of 3200 women underwent randomization; 1593 were assigned to the intervention group, and 1607 to the control group. Uptake of the intervention was nearly complete, with traditional biomass cookstoves being used at a median rate of less than 1 day per month. After randomization, the median 24-hour personal exposure to fine particulate matter was 23.9 µg per cubic meter in the intervention group and 70.7 µg per cubic meter in the control group. Among 3061 live births, a valid birth weight was available for 94.9% of the infants born to women in the intervention group and for 92.7% of infants born to those in the control group. The mean (±SD) birth weight was 2921±474.3 g in the intervention group and 2898±467.9 g in the control group, for an adjusted mean difference of 19.6 g (95% confidence interval, -10.1 to 49.2). CONCLUSIONS: The birth weight of infants did not differ significantly between those born to women who used LPG cookstoves and those born to women who used biomass cookstoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Asunto(s)
Contaminación del Aire Interior , Peso al Nacer , Culinaria , Material Particulado , Petróleo , Femenino , Humanos , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Biomasa , Culinaria/métodos , Material Particulado/efectos adversos , Material Particulado/análisis , Petróleo/efectos adversos , Petróleo/análisis , Recién Nacido , Adolescente , Adulto Joven , Adulto
3.
Public Health Nutr ; 26(8): 1686-1695, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36793234

RESUMEN

OBJECTIVE: Household air pollution (HAP) is a widespread environmental exposure worldwide. While several cleaner fuel interventions have been implemented to reduce personal exposures to HAP, it is unclear if cooking with cleaner fuels also affects the choice of meals and dietary intake. DESIGN: Individually randomised, open-label controlled trial of a HAP intervention. We aimed to determine the effect of a HAP intervention on dietary and Na intake. Intervention participants received a liquefied petroleum gas (LPG) stove, continuous fuel delivery and behavioural messaging during 1 year whereas control participants continued with usual cooking practices that involved the use of biomass-burning stoves. Dietary outcomes included energy, energy-adjusted macronutrients and Na intake at baseline, 6 months and 12 months post-randomisation using 24-h dietary recalls and 24-h urine. We used t-tests to estimate differences between arms in the post-randomisation period. SETTING: Rural settings in Puno, Peru. PARTICIPANTS: One hundred women aged 25-64 years. RESULTS: At baseline, control and intervention participants were similar in age (47·4 v. 49·5 years) and had similar daily energy (8894·3 kJ v. 8295·5 kJ), carbohydrate (370·8 g v. 373·3 g) and Na intake (4·9 g v. 4·8 g). One year after randomisation, we did not find differences in average energy intake (9292·4 kJ v. 8788·3 kJ; P = 0·22) or Na intake (4·5 g v. 4·6 g; P = 0·79) between control and intervention participants. CONCLUSIONS: Our HAP intervention consisting of an LPG stove, continuous fuel distribution and behavioural messaging did not affect dietary and Na intake in rural Peru.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Petróleo , Sodio en la Dieta , Adulto , Femenino , Humanos , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Perú , Culinaria , Población Rural
4.
Am J Respir Crit Care Med ; 203(11): 1386-1397, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306939

RESUMEN

Rationale: Approximately 40% of people worldwide are exposed to household air pollution (HAP) from the burning of biomass fuels. Previous efforts to document health benefits of HAP mitigation have been stymied by an inability to lower emissions to target levels. Objectives: We sought to determine if a household air pollution intervention with liquefied petroleum gas (LPG) improved cardiopulmonary health outcomes in adult women living in a resource-poor setting in Peru. Methods: We conducted a randomized controlled field trial in 180 women aged 25-64 years living in rural Puno, Peru. Intervention women received an LPG stove, continuous fuel delivery for 1 year, education, and behavioral messaging, whereas control women were asked to continue their usual cooking practices. We assessed for stove use adherence using temperature loggers installed in both LPG and biomass stoves of intervention households. Measurements and Main Results: We measured blood pressure, peak expiratory flow (PEF), and respiratory symptoms using the St. George's Respiratory Questionnaire at baseline and at 3-4 visits after randomization. Intervention women used their LPG stove exclusively for 98% of days. We did not find differences in average postrandomization systolic blood pressure (intervention - control 0.7 mm Hg; 95% confidence interval, -2.1 to 3.4), diastolic blood pressure (0.3 mm Hg; -1.5 to 2.0), prebronchodilator peak expiratory flow/height2 (0.14 L/s/m2; -0.02 to 0.29), postbronchodilator peak expiratory flow/height2 (0.11 L/s/m2; -0.05 to 0.27), or St. George's Respiratory Questionnaire total score (-1.4; -3.9 to 1.2) over 1 year in intention-to-treat analysis. There were no reported harms related to the intervention. Conclusions: We did not find evidence of a difference in blood pressure, lung function, or respiratory symptoms during the year-long intervention with LPG. Clinical trial registered with www.clinicaltrials.gov (NCT02994680).


Asunto(s)
Contaminación del Aire Interior/prevención & control , Biomasa , Culinaria/métodos , Petróleo , Salud Rural/estadística & datos numéricos , Adulto , Femenino , Humanos , Persona de Mediana Edad , Perú
5.
Indoor Air ; 30(4): 735-744, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064681

RESUMEN

BACKGROUND: Household air pollution from biomass cookstoves is a major contributor to global morbidity and mortality, yet little is known about exposures to nitrogen dioxide (NO2 ). OBJECTIVE: To characterize NO2 kitchen area concentrations and personal exposures among women with biomass cookstoves in the Peruvian Andes. METHODS: We measured kitchen area NO2 concentrations at high-temporal resolution in 100 homes in the Peruvian Andes. We assessed personal exposure to NO2 in a subsample of 22 women using passive samplers. RESULTS: Among 97 participants, the geometric mean (GM) highest hourly average NO2 concentration was 723 ppb (geometric standard deviation (GSD) 2.6) and the GM 24-hour average concentration was 96 ppb (GSD 2.6), 4.4 and 2.9 times greater than WHO indoor hourly (163 ppb) and annual (33 ppb) guidelines, respectively. Compared to the direct-reading instruments, we found similar kitchen area concentrations with 48-hour passive sampler measurements (GM 108 ppb, GSD 3.8). Twenty-seven percent of women had 48-hour mean personal exposures above WHO annual guidelines (GM 18 ppb, GSD 2.3). In univariate analyses, we found that roof, wall, and floor type, as well as higher SES, was associated with lower 24-hour kitchen area NO2 concentrations. PRACTICAL IMPLICATIONS: Kitchen area concentrations and personal exposures to NO2 from biomass cookstoves in the Peruvian Andes far exceed WHO guidelines. More research is warranted to understand the role of this understudied household air pollutant on morbidity and mortality and to inform cleaner-cooking interventions for public health.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Culinaria/métodos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Dióxido de Nitrógeno/análisis , Adulto , Contaminación del Aire Interior , Biomasa , Monóxido de Carbono , Culinaria/instrumentación , Monitoreo del Ambiente , Composición Familiar , Femenino , Humanos , Material Particulado/análisis , Perú , Población Rural
6.
Environ Res ; 142: 424-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26245367

RESUMEN

Household air pollution from the burning of biomass fuels is recognized as the third greatest contributor to the global burden of disease. Incomplete combustion of biomass fuels releases a complex mixture of carbon monoxide (CO), particulate matter (PM) and other toxins into the household environment. Some investigators have used indoor CO concentrations as a reliable surrogate of indoor PM concentrations; however, the assumption that indoor CO concentration is a reasonable proxy of indoor PM concentration has been a subject of controversy. We sought to describe the relationship between indoor PM2.5 and CO concentrations in 128 households across three resource-poor settings in Peru, Nepal, and Kenya. We simultaneously collected minute-to-minute PM2.5 and CO concentrations within a meter of the open-fire stove for approximately 24h using the EasyLog-USB-CO data logger (Lascar Electronics, Erie, PA) and the personal DataRAM-1000AN (Thermo Fisher Scientific Inc., Waltham, MA), respectively. We also collected information regarding household construction characteristics, and cooking practices of the primary cook. Average 24h indoor PM2.5 and CO concentrations ranged between 615 and 1440 µg/m(3), and between 9.1 and 35.1 ppm, respectively. Minute-to-minute indoor PM2.5 concentrations were in a safe range (<25 µg/m(3)) between 17% and 65% of the time, and exceeded 1000 µg/m(3) between 8% and 21% of the time, whereas indoor CO concentrations were in a safe range (<7 ppm) between 46% and 79% of the time and exceeded 50 ppm between 4%, and 20% of the time. Overall correlations between indoor PM2.5 and CO concentrations were low to moderate (Spearman ρ between 0.59 and 0.83). There was also poor agreement and evidence of proportional bias between observed indoor PM2.5 concentrations vs. those estimated based on indoor CO concentrations, with greater discordance at lower concentrations. Our analysis does not support the notion that indoor CO concentration is a surrogate marker for indoor PM2.5 concentration across all settings. Both are important markers of household air pollution with different health and environmental implications and should therefore be independently measured.


Asunto(s)
Contaminación del Aire Interior/análisis , Biomasa , Monóxido de Carbono/análisis , Material Particulado/análisis , Pobreza , Culinaria , Fuentes Generadoras de Energía , Vivienda/normas , Vivienda/estadística & datos numéricos , Kenia , Nepal , Perú , Población Rural/estadística & datos numéricos
7.
Lancet Glob Health ; 12(5): e815-e825, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614630

RESUMEN

BACKGROUND: Household air pollution might lead to fetal growth restriction during pregnancy. We aimed to investigate whether a liquefied petroleum gas (LPG) intervention to reduce personal exposures to household air pollution during pregnancy would alter fetal growth. METHODS: The Household Air Pollution Intervention Network (HAPIN) trial was an open-label randomised controlled trial conducted in ten resource-limited settings across Guatemala, India, Peru, and Rwanda. Pregnant women aged 18-34 years (9-19 weeks of gestation) were randomly assigned in a 1:1 ratio to receive an LPG stove, continuous fuel delivery, and behavioural messaging or to continue usual cooking with biomass for 18 months. We conducted ultrasound assessments at baseline, 24-28 weeks of gestation (the first pregnancy visit), and 32-36 weeks of gestation (the second pregnancy visit), to measure fetal size; we monitored 24 h personal exposures to household air pollutants during these visits; and we weighed children at birth. We conducted intention-to-treat analyses to estimate differences in fetal size between the intervention and control group, and exposure-response analyses to identify associations between household air pollutants and fetal size. This trial is registered with ClinicalTrials.gov (NCT02944682). FINDINGS: Between May 7, 2018, and Feb 29, 2020, we randomly assigned 3200 pregnant women (1593 to the intervention group and 1607 to the control group). The mean gestational age was 14·5 (SD 3·0) weeks and mean maternal age was 25·6 (4·5) years. We obtained ultrasound assessments in 3147 (98·3%) women at baseline, 3052 (95·4%) women at the first pregnancy visit, and 2962 (92·6%) at the second pregnancy visit, through to Aug 25, 2020. Intervention adherence was high (the median proportion of days with biomass stove use was 0·0%, IQR 0·0-1·6) and pregnant women in the intervention group had lower mean exposures to particulate matter with a diameter less than 2·5 µm (PM2·5; 35·0 [SD 37·2] µg/m3vs 103·3 [97·9] µg/m3) than did women in the control group. We did not find differences in averaged post-randomisation Z scores for head circumference (0·30 vs 0·39; p=0·04), abdominal circumference (0·38 vs 0·39; p=0·99), femur length (0·44 vs 0·45; p=0·73), and estimated fetal weight or birthweight (-0·13 vs -0·12; p=0·70) between the intervention and control groups. Personal exposures to household air pollutants were not associated with fetal size. INTERPRETATION: Although an LPG cooking intervention successfully reduced personal exposure to air pollution during pregnancy, it did not affect fetal size. Our findings do not support the use of unvented liquefied petroleum gas stoves as a strategy to increase fetal growth in settings were biomass fuels are used predominantly for cooking. FUNDING: US National Institutes of Health and Bill & Melinda Gates Foundation. TRANSLATIONS: For the Kinyarwanda, Spanish and Tamil translations of the abstract see Supplementary Materials section.


Asunto(s)
Contaminantes Atmosféricos , Desarrollo Fetal , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Biomasa , Culinaria , India , Estados Unidos , Adolescente , Adulto Joven , Adulto
8.
Environ Pollut ; 345: 123414, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286258

RESUMEN

Household air pollution (HAP) from cooking with solid fuels used during pregnancy has been associated with adverse pregnancy outcomes. The Household Air Pollution Intervention Network (HAPIN) trial was a randomized controlled trial that assessed the impact of a liquefied petroleum gas (LPG) stove and fuel intervention on health in Guatemala, India, Peru, and Rwanda. Here we investigated the effects of the LPG stove and fuel intervention on stillbirth, congenital anomalies and neonatal mortality and characterized exposure-response relationships between personal exposures to fine particulate matter (PM2.5), black carbon (BC) and carbon monoxide (CO) and these outcomes. Pregnant women (18 to <35 years of age; gestation confirmed by ultrasound at 9 to <20 weeks) were randomly assigned to intervention or control arms. We monitored these fetal and neonatal outcomes and personal exposure to PM2.5, BC and CO three times during pregnancy, we conducted intention-to-treat (ITT) and exposure-response (E-R) analyses to determine if the HAPIN intervention and corresponding HAP exposure was associated with the risk of fetal/neonatal outcomes. A total of 3200 women (mean age 25.4 ± 4.4 years, mean gestational age at randomization 15.4 ± 3.1 weeks) were included in this analysis. Relative risks for stillbirth, congenital anomaly and neonatal mortality were 0.99 (0.60, 1.66), 0.92 (95 % CI 0.52, 1.61), and 0.99 (0.54, 1.85), respectively, among women in the intervention arm compared to controls in an ITT analysis. Higher mean personal exposures to PM2.5, CO and BC during pregnancy were associated with a higher, but statistically non-significant, incidence of adverse outcomes. The LPG stove and fuel intervention did not reduce the risk of these outcomes nor did we find evidence supporting an association between personal exposures to HAP and stillbirth, congenital anomalies and neonatal mortality.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Petróleo , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , Adulto Joven , Contaminación del Aire Interior/análisis , Culinaria , Mortalidad Infantil , Material Particulado/análisis , Petróleo/toxicidad , Hollín , Mortinato/epidemiología , Adolescente
9.
Environ Int ; 180: 108223, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37748372

RESUMEN

BACKGROUND: Exclusive clean fuel use is essential for realizing health and other benefits but is often unaffordable. Decreasing household-level fuel needs could make exclusive clean fuel use more affordable, but there is a lack of knowledge on the amount of fuel savings that could be achieved through fuel conservation behaviors relevant to rural settings in low- and middle-income countries. METHODS: Within a trial in Peru, we trained a random half of intervention participants, who had previously received a liquefied petroleum gas (LPG) stove and were purchasing their own fuel, on fuel conservation strategies. We measured the amount of fuel and mega joules (MJ) of energy consumed by all participants, including control participants who were receiving free fuel from the trial. We administered surveys on fuel conservation behaviors and assigned a score based on the number of behaviors performed. RESULTS: Intervention participants with the training had a slightly higher conservation score than those without (7.2 vs. 6.6 points; p = 0.07). Across all participants, average daily energy consumption decreased by 9.5 MJ for each 1-point increase in conservation score (p < 0.001). Among households who used exclusively LPG (n = 99), each 1-point increase in conservation score was associated with a 0.04 kg decrease in LPG consumption per household per day (p = 0.03). Using pressure cookers and heating water in the sun decreased energy use, while using clay pots and forgetting to close stove knobs increased energy use. CONCLUSION: Our findings suggest that a household could save 1.16 kg of LPG per month for each additional fuel conservation behavior, for a maximum potential savings of 8.1 kg per month. Fuel conservation messaging could be integrated into national household energy policies to increase the affordability of exclusive clean fuel use, and subsequently achieve the environmental and health benefits that could accompany such a transition.


Asunto(s)
Contaminación del Aire Interior , Artículos Domésticos , Petróleo , Humanos , Contaminación del Aire Interior/análisis , Culinaria , Política Pública , Costos y Análisis de Costo
10.
Environ Int ; 178: 108059, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37413928

RESUMEN

Household air pollution from solid cooking fuel use during gestation has been associated with adverse pregnancy and birth outcomes. The Household Air Pollution Intervention Network (HAPIN) trial was a randomized controlled trial of free liquefied petroleum gas (LPG) stoves and fuel in Guatemala, Peru, India, and Rwanda. A primary outcome of the main trial was to report the effects of the intervention on infant birth weight. Here we evaluate the effects of a LPG stove and fuel intervention during pregnancy on spontaneous abortion, postpartum hemorrhage, hypertensive disorders of pregnancy, and maternal mortality compared to women who continued to use solid cooking fuels. Pregnant women (18-34 years of age; gestation confirmed by ultrasound at 9-19 weeks) were randomly assigned to an intervention (n = 1593) or control (n = 1607) arm. Intention-to-treat analyses compared outcomes between the two arms using log-binomial models. Among the 3195 pregnant women in the study, there were 10 spontaneous abortions (7 intervention, 3 control), 93 hypertensive disorders of pregnancy (47 intervention, 46 control), 11 post postpartum hemorrhage (5 intervention, 6 control) and 4 maternal deaths (3 intervention, 1 control). Compared to the control arm, the relative risk of spontaneous abortion among women randomized to the intervention was 2.32 (95% confidence interval (CI): 0.60, 8.96), hypertensive disorders of pregnancy 1.02 (95% CI: 0.68, 1.52), postpartum hemorrhage 0.83 (95% CI: 0.25, 2.71) and 2.98 (95% CI: 0.31, 28.66) for maternal mortality. In this study, we found that adverse maternal outcomes did not differ based on randomized stove type across four country research sites.


Asunto(s)
Aborto Espontáneo , Contaminación del Aire Interior , Contaminación del Aire , Hipertensión Inducida en el Embarazo , Petróleo , Hemorragia Posparto , Lactante , Femenino , Humanos , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Aborto Espontáneo/etiología , Aborto Espontáneo/inducido químicamente , Hemorragia Posparto/prevención & control , Hemorragia Posparto/inducido químicamente , Culinaria
11.
Environ Health Perspect ; 130(5): 57007, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35549716

RESUMEN

BACKGROUND: Household air pollution (HAP) from biomass fuel combustion remains a leading environmental risk factor for morbidity worldwide. OBJECTIVE: Measure the effect of liquefied petroleum gas (LPG) interventions on HAP exposures in Puno, Peru. METHODS: We conducted a 1-y randomized controlled trial followed by a 1-y pragmatic crossover trial in 180 women age 25-64 y. During the first year, intervention participants received a free LPG stove, continuous fuel delivery, and regular behavioral messaging, whereas controls continued their biomass cooking practices. During the second year, control participants received a free LPG stove, regular behavioral messaging, and vouchers to obtain LPG tanks from a nearby distributor, whereas fuel distribution stopped for intervention participants. We collected 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM) with aerodynamic diameter ≤2.5µm (PM2.5), black carbon (BC), and carbon monoxide (CO) at baseline and 3-, 6-, 12-, 18-, and 24-months post randomization. RESULTS: Baseline mean [±standard deviation (SD)] PM2.5 (kitchen area concentrations 1,220±1,010 vs. 1,190±880 µg/m3; personal exposure 126±214 vs. 104±100 µg/m3), CO (kitchen 53±49 vs. 50±41 ppm; personal 7±8 vs. 7±8 ppm), and BC (kitchen 180±120 vs. 210±150 µg/m3; personal 19±16 vs. 21±22 µg/m3) were similar between control and intervention participants. Intervention participants had consistently lower mean (±SD) concentrations at the 12-month visit for kitchen (41±59 µg/m3, 3±6 µg/m3, and 8±13 ppm) and personal exposures (26±34 µg/m3, 2±3 µg/m3, and 3±4 ppm) to PM2.5, BC, and CO when compared to controls during the first year. In the second year, we observed comparable HAP reductions among controls after the voucher-based intervention for LPG fuel was implemented (24-month visit PM2.5, BC, and CO kitchen mean concentrations of 34±74 µg/m3, 3±5 µg/m3, and 6±6 ppm and personal exposures of 17±15 µg/m3, 2±2 µg/m3, and 3±4 ppm, respectively), and average reductions were present among intervention participants even after free fuel distribution stopped (24-month visit PM2.5, BC, and CO kitchen mean concentrations of 561±1,251 µg/m3, 82±124 µg/m3, and 23±28 ppm and personal exposures of 35±38 µg/m3, 6±6 µg/m3, and 4±5 ppm, respectively). DISCUSSION: Both home delivery and voucher-based provision of free LPG over a 1-y period, in combination with provision of a free LPG stove and longitudinal behavioral messaging, reduced HAP to levels below 24-h World Health Organization air quality guidelines. Moreover, the effects of the intervention on HAP persisted for a year after fuel delivery stopped. Such strategies could be applied in LPG programs to reduce HAP and potentially improve health. https://doi.org/10.1289/EHP10054.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Petróleo , Adulto , Contaminación del Aire Interior/análisis , Culinaria , Estudios Cruzados , Femenino , Humanos , Persona de Mediana Edad , Material Particulado/análisis , Perú , Población Rural , Hollín
12.
Environ Int ; 146: 106196, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33160161

RESUMEN

BACKGROUND: Liquefied petroleum gas (LPG) stoves have been promoted in low- and middle-income countries (LMICs) as a clean energy alternative to biomass burning cookstoves. OBJECTIVE: We sought to characterize kitchen area concentrations and personal exposures to nitrogen dioxide (NO2) within a randomized controlled trial in the Peruvian Andes. The intervention included the provision of an LPG stove and continuous fuel distribution with behavioral messaging to maximize compliance. METHODS: We measured 48-hour kitchen area NO2 concentrations at high temporal resolution in homes of 50 intervention participants and 50 control participants longitudinally within a biomass-to-LPG intervention trial. We also collected 48-hour mean personal exposures to NO2 among a subsample of 16 intervention and 9 control participants. We monitored LPG and biomass stove use continuously throughout the trial. RESULTS: In 367 post-intervention 24-hour kitchen area samples of 96 participants' homes, geometric mean (GM) highest hourly NO2 concentration was 138 ppb (geometric standard deviation [GSD] 2.1) in the LPG intervention group and 450 ppb (GSD 3.1) in the biomass control group. Post-intervention 24-hour mean NO2 concentrations were a GM of 43 ppb (GSD 1.7) in the intervention group and 77 ppb (GSD 2.0) in the control group. Kitchen area NO2 concentrations exceeded the WHO indoor hourly guideline an average of 1.3 h per day among LPG intervention participants. GM 48-hour personal exposure to NO2 was 5 ppb (GSD 2.4) among 35 48-hour samples of 16 participants in the intervention group and 16 ppb (GSD 2.3) among 21 samples of 9 participants in the control group. DISCUSSION: In a biomass-to-LPG intervention trial in Peru, kitchen area NO2 concentrations were substantially lower within the LPG intervention group compared to the biomass-using control group. However, within the LPG intervention group, 69% of 24-hour kitchen area samples exceeded WHO indoor annual guidelines and 47% of samples exceeded WHO indoor hourly guidelines. Forty-eight-hour NO2 personal exposure was below WHO indoor annual guidelines for most participants in the LPG intervention group, and we did not measure personal exposure at high temporal resolution to assess exposure to cooking-related indoor concentration peaks. Further research is warranted to understand the potential health risks of LPG-related NO2 emissions and inform current campaigns which promote LPG as a clean-cooking option.


Asunto(s)
Contaminación del Aire Interior , Petróleo , Contaminación del Aire Interior/análisis , Culinaria , Humanos , Dióxido de Nitrógeno , Material Particulado/análisis , Perú
13.
Energy Sustain Dev ; 46: 82-93, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30364502

RESUMEN

INTRODUCTION: Over 80% of rural households in Peru use solid fuels as their primary source of domestic energy, which contributes to several health problems. In 2016, 6.7 million Peruvians were living in rural areas. The Fondo de Inclusión Social Energético (FISE) LPG Promotion Program, which began in 2012 and is housed under the Ministry of Energy and Mining, is a government-sponsored initiative aimed at reducing use of solid fuels by increasing access to clean fuel for cooking to poor Peruvian households. METHODS: We conducted a mixed methods study incorporating data from publicly available records and reports, a community survey of 375 households in Puno (the province with the largest number of FISE beneficiary households), and in-depth interviews with community members and key stakeholders. We used the Reach, Effectiveness - Adoption, Implementation, Maintenance (RE-AIM) framework to guide our data collection and analysis efforts. In a sample of 95 households, we also measured 48-hour area concentrations and personal exposures to fine particulate matter (PM2.5). RESULTS: The FISE LPG promotion program has achieved high geographical reach; the program is currently serving households in 100% of districts in Peru. Households with access to electricity may be participating at a higher level than households without electricity because the program is implemented primarily by electricity distributors. In a sample of 95 households, FISE beneficiaries experienced a reduction in kitchen concentrations of PM2.5; however, there were no differences in personal exposures, and both kitchen and personal exposures were above the WHO intermediate target for indoor air quality. Among the 375 households surveyed, stove stacking with biomass fuels was reported in more than 95% of both beneficiary and non-beneficiary households, with fewer than 5% reporting exclusive use. In-depth interviews suggest that the complexity of enrollment process and access to LPG distribution points may be key barriers to participating in FISE. CONCLUSION: The FISE LPG Program has achieved high reach and its targeted subsidy and surcharge-based financing structure represent a potentially feasible and sustainable model for other government programs. However, the prevalence of stove stacking among FISE beneficiaries remains high. There is a need for improved communication channels between program implementers and beneficiaries. FISE should also consider expanding the mobile LPG network and community delivery service to reduce physical barriers and indirect costs of LPG acquisition. Finally, increasing the value of LPG vouchers to completely cover one or two tanks a month, or alternatively, introducing behavior change strategies to reduce monthly LPG usage, may facilitate the transition to exclusive LPG use.

14.
Trials ; 14: 327, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24112419

RESUMEN

BACKGROUND: Exposure to biomass fuel smoke is one of the leading risk factors for disease burden worldwide. International campaigns are currently promoting the widespread adoption of improved cookstoves in resource-limited settings, yet little is known about the cultural and social barriers to successful improved cookstove adoption and how these barriers affect environmental exposures and health outcomes. DESIGN: We plan to conduct a one-year crossover, feasibility intervention trial in three resource-limited settings (Kenya, Nepal and Peru). We will enroll 40 to 46 female primary cooks aged 20 to 49 years in each site (total 120 to 138). METHODS: At baseline, we will collect information on sociodemographic characteristics and cooking practices, and measure respiratory health and blood pressure for all participating women. An initial observational period of four months while households use their traditional, open-fire design cookstoves will take place prior to randomization. All participants will then be randomized to receive one of two types of improved, ventilated cookstoves with a chimney: a commercially-constructed cookstove (Envirofit G3300/G3355) or a locally-constructed cookstove. After four months of observation, participants will crossover and receive the other improved cookstove design and be followed for another four months. During each of the three four-month study periods, we will collect monthly information on self-reported respiratory symptoms, cooking practices, compliance with cookstove use (intervention periods only), and measure peak expiratory flow, forced expiratory volume at 1 second, exhaled carbon monoxide and blood pressure. We will also measure pulmonary function testing in the women participants and 24-hour kitchen particulate matter and carbon monoxide levels at least once per period. DISCUSSION: Findings from this study will help us better understand the behavioral, biological, and environmental changes that occur with a cookstove intervention. If this trial indicates that reducing indoor air pollution is feasible and effective in resource-limited settings like Peru, Kenya and Nepal, trials and programs to modify the open burning of biomass fuels by installation of low-cost ventilated cookstoves could significantly reduce the burden of illness and death worldwide. TRIAL REGISTRATION: ClinicalTrials.gov NCT01686867.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire Interior/efectos adversos , Culinaria/instrumentación , Países en Desarrollo/economía , Artículos Domésticos , Vivienda , Enfermedades Pulmonares/prevención & control , Proyectos de Investigación , Humo/efectos adversos , Adulto , Presión Sanguínea , Monóxido de Carbono/metabolismo , Estudios Cruzados , Características Culturales , Monitoreo del Ambiente , Diseño de Equipo , Espiración , Estudios de Factibilidad , Femenino , Volumen Espiratorio Forzado , Conocimientos, Actitudes y Práctica en Salud , Humanos , Exposición por Inhalación/efectos adversos , Kenia , Pulmón/fisiopatología , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/fisiopatología , Persona de Mediana Edad , Nepal , Ápice del Flujo Espiratorio , Perú , Factores de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA