Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(1): 017203, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22304283

RESUMEN

The performance of spintronic devices critically depends on three material parameters, namely, the spin polarization in the current (P), the intrinsic Gilbert damping (α), and the coefficient of the nonadiabatic spin transfer torque (ß). However, there has been no method to determine these crucial material parameters in a self-contained manner. Here we show that P, α, and ß can be simultaneously determined by performing a single series of time-domain measurements of current-induced spin wave dynamics in a ferromagnetic film.

2.
Nano Lett ; 10(11): 4505-8, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20923162

RESUMEN

While ferromagnetic nanodots are being widely studied from fundamental as well as application points of views, so far all the dots have been physically defined; once made, one cannot change their dimension or size. We show that ferromagnetic nanodots can be electrically defined. To realize this, we utilize an electric field to modulate the in-plane distribution of carriers in a ferromagnetic semiconductor (Ga,Mn)As film with a meshed gate structure having a large number of nanoscaled windows.


Asunto(s)
Arsenicales/química , Galio/química , Magnetismo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Arsenicales/efectos de la radiación , Campos Electromagnéticos , Galio/efectos de la radiación , Ensayo de Materiales , Conformación Molecular/efectos de la radiación , Nanoestructuras/efectos de la radiación , Tamaño de la Partícula , Propiedades de Superficie/efectos de la radiación
3.
Sci Rep ; 11(1): 6237, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737577

RESUMEN

This study investigates the effect of strain on the compensation temperature of ferrimagnetic Tb-Fe films formed on a flexible substrate. The compensation temperature is determined by the anomalous Hall measurement, and an application of 1.2% tensile strain reduces the compensation temperature by 12 K. X-ray magnetic circular dichroism reveals that approximately 5% of Fe magnetic moment and approximately 1% of Tb magnetic moment are reduced by an application of 0.9% tensile strain at the room temperature. To understand the greater reduction in Fe magnetization compared with that in Tb and the compensation temperature reduction simultaneously, a model applying molecular field theory is analyzed. Changes in three types of exchange coupling between Fe and Tb atoms are speculated to be caused by the strain.

4.
Sci Rep ; 9(1): 13197, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519954

RESUMEN

Since the charge current plays a major role in information processing and Joule heating is inevitable in electronic devices, thermal management, i.e., designing heat flows, is required. Here, we report that strain application can change a direction of a heat current generated by magneto-thermoelectric effects. For demonstration, we used metallic magnets in a thin-film form, wherein the anomalous Ettingshausen effect mainly determines the direction of the heat flow. Strain application can alter the magnetization direction owing to the magnetoelastic effect. As a result, the heat current, which is in the direction of the cross product of the charge current and the magnetization vector, can be switched or rotated simply by applying a tensile strain to the metallic magnets. We demonstrate 180° switching and 90° rotation of the heat currents in an in-plane magnetized Ni sample on a rigid sapphire substrate and a perpendicularly magnetized TbFeCo film on a flexible substrate, respectively. An active thermography technique was used to capture the strain-induced change in the heat current direction. The method presented here provides a novel method for controlling thermal energy in electronic devices.

5.
Sci Adv ; 4(12): eaav0265, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30588494

RESUMEN

We show that the electric field (EF) can control the domain wall (DW) velocity in a Pt/Co/Pd asymmetric structure. With the application of a gate voltage, a substantial change in DW velocity up to 50 m/s is observed, which is much greater than that observed in previous studies. Moreover, modulation of a DW velocity exceeding 100 m/s is demonstrated in this study. An EF-induced change in the interfacial Dzyaloshinskii-Moriya interaction (DMI) up to several percent is found to be the origin of the velocity modulation. The DMI-mediated velocity change shown here is a fundamentally different mechanism from that caused by EF-induced anisotropy modulation. Our results will pave the way for the electrical manipulation of spin structures and dynamics via DMI control, which can enhance the performance of spintronic devices.

6.
Sci Rep ; 8(1): 7195, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739954

RESUMEN

A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current IDS modulation by a gate-source voltage VGS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large IDS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that IDS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by VGS. This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

7.
Nat Commun ; 9(1): 1648, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695776

RESUMEN

Chiral spin textures of a ferromagnetic layer in contact to a heavy non-magnetic metal, such as Néel-type domain walls and skyrmions, have been studied intensively because of their potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal in addition to Heisenberg exchange. The density functional theory and the tight-binding model calculations reveal that inversion symmetry breaking with spin-orbit coupling gives rise to the orbital-related correlation. Our study provides the experimental connection between the orbital physics and the spin-orbit-related phenomena, such as DMI.

8.
Sci Rep ; 7(1): 790, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28400565

RESUMEN

Manipulation of magnetization using current-induced torque is crucial for magnetic recording devices. Recently, the spin-orbit torque (SOT) that emerges in a ferromagnetic thin film on a heavy metal is focused as a new scheme for magnetization switching in perpendicularly magnetized systems. Since the SOT provides a perpendicular effective field to the system, the formation of a magnetic multiple domain state because of Joule heating is supressed in the magnetization reversal process. This means that high reliable switching is possible using the SOT. Here, by utilizing the SOT induced domain stability, we show that an electrical current directly injected to a perpendicularly magnetized Pt/Co/Pd system can magnetize itself, that is, current-induced magnetization process from multi to single domain state. A quantitative determination of the SOT is performed using the current-induced magnetization curve. The present results are of great importance as another approach to evaluate the SOT effect, as well as a demonstration of domain state switching caused by the SOT.

9.
Sci Rep ; 7: 46132, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406236

RESUMEN

We used x-ray absorption spectroscopy and x-ray magnetic circular dichroism to investigate the effects of inserting Cu into Co/Pt interfaces, and found that a 0.4-nm-thick inserted Cu layer showed perpendicularly magnetized properties induced by the proximity effect through the Co and Pt layers. The dependence of the magnetic properties on the thickness of the Cu layers showed that the proximity effects between Co and Pt with perpendicular magnetic anisotropy can be prevented by the insertion of a Cu layer with a nominal threshold thickness of 0.7 nm. Element-specific magnetization curves were also obtained, demonstrating that the out-of-plane magnetization is induced in the Cu layers of the Co/Cu/Pt structures.

10.
Sci Rep ; 6: 38005, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897251

RESUMEN

A ferromagnetic (FM)-metal/oxide stack is the key structure determining the performance of spintronic devices. However, the effect of the electronic polarity of the oxide on the magnetic properties of the adjacent FM-metal has not been investigated previously. Here, we report the magnetic and structural properties of Co ultra-thin films sputter deposited directly on the Zn- and O-polar surfaces of ZnO substrates. The magnetic anisotropy and Curie temperature exhibit dramatic polarity-dependent differences for films on these surfaces. Structural analyses reveal that the heterointerface of the Co/O-polar surface is rather diffusive, whereas that of the Co/Zn-polar surface is atomically flat. These results suggest that the surface polarity plays a key role in determining the properties of the film. This novel FM-metal/polar-oxide system is expected to add new functionality to spintronic devices and provide an ideal basis for investigating the effect of a built-in electric field on the magnetism in a metallic monolayer.

11.
Sci Rep ; 5: 14303, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26391306

RESUMEN

Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of "can an electric field make naturally non-magnetic materials ferromagnetic?".

12.
Nat Commun ; 4: 2011, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23771026

RESUMEN

Energy barriers in magnetization reversal dynamics have long been of interest because the barrier height determines the thermal stability of devices as well as the threshold force triggering their dynamics. Especially in memory and logic applications, there is a dilemma between the thermal stability of bit data and the operation power of devices, because larger energy barriers for higher thermal stability inevitably lead to larger magnetic fields (or currents) for operation. Here we show that this is not the case for current-induced magnetic domain-wall motion induced by adiabatic spin-transfer torque. By quantifying domain-wall depinning energy barriers by magnetic field and current, we find that there exist two different pinning barriers, extrinsic and intrinsic energy barriers, which govern the thermal stability and threshold current, respectively. This unique two-barrier system allows low-power operation with high thermal stability, which is impossible in conventional single-barrier systems.

13.
J Phys Condens Matter ; 24(2): 024217, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22173581

RESUMEN

The domain wall (DW) velocity above the Walker field drops abruptly with increasing magnetic field, because of the so-called Walker breakdown, where the DW moves with a precessional mode. On applying the higher field, the DW velocity again starts to increase gradually. We report the DW propagation around this local minimum regime in detail, investigated through the time-resolved electrical detection technique, with a magnetic tunnel junction. Just above the Walker field, we succeeded in detecting the precessional motion of the DW in a real-time regime, while a different mode appeared around the local minimum of the DW velocity.

15.
Phys Rev Lett ; 101(11): 117208, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18851329

RESUMEN

The Mott relation between the electrical and thermoelectric transport coefficients normally holds for phenomena involving scattering. However, the anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit interaction. In this work, we have simultaneously measured AHE and the anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films, and observed an exceptionally large ANE at zero magnetic field. We further show that AHE and ANE share a common origin and demonstrate the validity of the Mott relation for the anomalous transport phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA