Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(3)2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30720745

RESUMEN

Drug repositioning promises the advantages of reducing costs and expediting approvalschedules. An induction of the anesthetic and sedative drug; midazolam (MDZ), regulatesinhibitory neurotransmitters in the vertebrate nervous system. In this study we show the potentialfor drug repositioning of MDZ for dentin regeneration. A porcine dental pulp-derived cell line(PPU-7) that we established was cultured in MDZ-only, the combination of MDZ with bonemorphogenetic protein 2, and the combination of MDZ with transforming growth factor-beta 1. Thedifferentiation of PPU-7 into odontoblasts was investigated at the cell biological and genetic level.Mineralized nodules formed in PPU-7 were characterized at the protein and crystal engineeringlevels. The MDZ-only treatment enhanced the alkaline phosphatase activity and mRNA levels ofodontoblast differentiation marker genes, and precipitated nodule formation containing a dentinspecificprotein (dentin phosphoprotein). The nodules consisted of randomly orientedhydroxyapatite nanorods and nanoparticles. The morphology, orientation, and chemicalcomposition of the hydroxyapatite crystals were similar to those of hydroxyapatite that hadtransformed from amorphous calcium phosphate nanoparticles, as well as the hydroxyapatite inhuman molar dentin. Our investigation showed that a combination of MDZ and PPU-7 cellspossesses high potential of drug repositioning for dentin regeneration.


Asunto(s)
Dentina/efectos de los fármacos , Reposicionamiento de Medicamentos , Midazolam/farmacología , Regeneración , Animales , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/uso terapéutico , Línea Celular , Dentina/fisiología , Midazolam/uso terapéutico , Odontoblastos , Porcinos , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/uso terapéutico
2.
Int J Mol Sci ; 19(8)2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30126087

RESUMEN

Vital pulp therapy (VPT) is to preserve the nerve and maintain healthy dental pulp tissue. Laser irradiation (LI) is beneficial for VPT. Understanding how LI affects dental pulp cells and tissues is necessary to elucidate the mechanism of reparative dentin and dentin regeneration. Here, we show how Er:YAG-LI and diode-LI modulated cell proliferation, apoptosis, gene expression, protease activation, and mineralization induction in dental pulp cells and tissues using cell culture, immunohistochemical, genetic, and protein analysis techniques. Both LIs promoted proliferation in porcine dental pulp-derived cell lines (PPU-7), although the cell growth rate between the LIs was different. In addition to proliferation, both LIs also caused apoptosis; however, the apoptotic index for Er:YAG-LI was higher than that for diode-LI. The mRNA level of odontoblastic gene markers-two dentin sialophosphoprotein splicing variants and matrix metalloprotease (MMP)20 were enhanced by diode-LI, whereas MMP2 was increased by Er:YAG-LI. Both LIs enhanced alkaline phosphatase activity, suggesting that they may help induce PPU-7 differentiation into odontoblast-like cells. In terms of mineralization induction, the LIs were not significantly different, although their cell reactivity was likely different. Both LIs activated four MMPs in porcine dental pulp tissues. We helped elucidate how reparative dentin is formed during laser treatments.


Asunto(s)
Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Pulpa Dental/efectos de la radiación , Animales , Diferenciación Celular/efectos de la radiación , Línea Celular , Pulpa Dental/citología , Pulpa Dental/metabolismo , Proteínas de la Matriz Extracelular/análisis , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica/efectos de la radiación , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Metaloproteinasa 20 de la Matriz/análisis , Metaloproteinasa 20 de la Matriz/genética , Odontoblastos/citología , Odontoblastos/metabolismo , Odontoblastos/efectos de la radiación , Fosfoproteínas/análisis , Fosfoproteínas/genética , Sialoglicoproteínas/análisis , Sialoglicoproteínas/genética , Porcinos
3.
Circ Rep ; 4(1): 38-47, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35083387

RESUMEN

Background: Previous studies showed that hydroxyapatite electret (HAE) accelerates the regeneration of vascular endothelial cells and angiogenesis. This study investigated the effects of HAE in myocardial infarction (MI) model mice. Methods and Results: MI was induced in mice by ligating the left anterior descending artery. Immediately after ligation, HAE, non-polarized hydroxyapatite (HAN), or water (control) was injected into the infarct border myocardium. Functional and histological analyses were performed 2 weeks later. Echocardiography revealed that HAE injection preserved left ventricular systolic function and the wall thickness of the scar, whereas HAN-injected mice had impaired cardiac function and thinning of the wall, similar to control mice. Histological assessment showed that HAE injection significantly attenuated the length of the scar lesion. There was significant accumulation of CD31-positive cells and increased expression of vascular endothelial growth factor (Vegf), intercellular adhesion molecule-1 (Icam1), vascular cell adhesion molecule-1 (Vcam1), hypoxia-inducible factor-1α (Hif1a), and C-X-C motif chemokine ligand 12 (Cxcl12) genes in the infarct border zone of HAE-injected mice. These effects were not induced by HAN injection. Anti-VEGFR2 antibody canceled the beneficial effect of HAE. In vitro experiments in a human cardiovascular endothelial cell line showed that HAE dose-dependently increased VEGFA expression. Conclusions: Local injection of HAE attenuated infarct size and improved cardiac function after MI, probably due to angiogenesis. The electric charge of HAE may stimulate angiogenesis via HIF1α-CXCL12/VEGF signaling.

4.
J Oral Biosci ; 61(3): 163-172, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31252053

RESUMEN

OBJECTIVE: To provide in vivo biochemical evidence for the isolation, identification, and characterization of porcine keratin 75 (K75) in developing enamel. METHODS: Immunolocalization of K75 was observed in mandibles from mice at postnatal days 5 and 11. K75 gene expression was analyzed by quantitative reverse transcription-polymerase chain reaction using enamel organ epithelium (EOE) of incisors from pigs at 5 months of age. Enamel protein was extracted and isolated from both immature and mature enamel of second molars from 5-month-old pigs, and the K75 antibody-positive fraction was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). In vitro protease digestion of K75-antibody-positive fraction was carried out using porcine kallikrein 4 (pKLK4) or recombinant human enamelysin (rhMMP20) and their degradation patterns were characterized by both SDS-PAGE and western blotting. RESULTS: Specific immunostaining for K75 was restricted to the layers of stratum intermedium and the enamel side of ameloblasts in mice at postnatal day 5, and to the papillary layer at postnatal day 11. Porcine K75 was expressed throughout enamel formation, but its transcript levels were significantly higher in the transition EOE than in the secretory- and maturation-stage EOE. Porcine K75 was extracted from the neutral soluble fraction from both immature and mature enamel. It was identified by LC-MS/MS analysis, and was found not to be degraded by either pKLK4 or rhMMP20. CONCLUSION: We propose that K75 is present in the developing enamel and undergoes different processing/degradation compared to other enamel proteins.


Asunto(s)
Amelogénesis , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Esmalte Dental , Humanos , Queratinas , Ratones , Porcinos
5.
J Oral Biosci ; 61(1): 43-54, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30929801

RESUMEN

OBJECTIVES: To investigate potential functions of transforming growth factor-beta (TGF-ß) isoforms in maturation-stage ameloblasts during amelogenesis. METHODS: In vivo activation of TGF-ß was characterized by using matrix metalloproteinase 20 null (Mmp20-/-) and wild-type (Mmp20+/+) mice. Using mHAT9d cells cultured in the presence of each TGF-ß isoform, (1) cell proliferation was determined by MTS assay, (2) immunostaining with anti-cleaved caspase-3 monoclonal antibody was performed and apoptotic indices were measured, (3) gene expression was analyzed by RT-qPCR, and (4) the uptake of amelogenin into mHAT9d cells was directly observed using a fluorescence microscope. RESULTS: TGF-ß1 and TGF-ß3 were present in the enamel matrix of developing teeth which were activated by MMP20 in vivo. A genetic study revealed that the three TGF-ß isoforms upregulate kallikrein 4 (KLK4) mRNA levels but downregulate carbonic anhydrase II. Moreover, TGF-ß1 and TGF-ß2 significantly upregulated the mRNA level of amelotin, whereas TGF-ß3 dramatically downregulated the mRNA levels of odontogenic ameloblast-associated protein (ODAM), family with sequence similarity 83 member H (FAM83H), and alkaline phosphatase (ALP). Immunostaining analysis showed that the apoptosis of mHAT9d cells is induced by three TGF-ß isoforms, with TGF-ß3 being most effective. Both TGF-ß1 and TGF-ß3 induced endocytosis of amelogenin. CONCLUSIONS: We propose that TGF-ß is regulated in an isoform-specific manner to perform multiple biological functions such as gene expression related to the structure of basal lamina/ameloblasts, mineral ion transport, apoptosis, and endocytosis in maturation-stage ameloblasts.


Asunto(s)
Ameloblastos , Amelogénesis , Metaloproteinasa 20 de la Matriz , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta3 , Amelogenina , Animales , Ratones , Isoformas de Proteínas , Proteínas
6.
Sci Rep ; 8(1): 4450, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535349

RESUMEN

Transforming growth factor-beta (TGF-ß) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-ß in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF-ß1 and TGF-ß3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-ß2 is high in dental pulp. TGF-ß1 is a major isoform of TGF-ß, and latent TGF-ß1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF-ß1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF-ß1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF-ß1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF-ß1 expression did not change between wild-type and MMP20 null mice. TGF-ß1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF-ß1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.


Asunto(s)
Pulpa Dental/citología , Dentina/citología , Odontoblastos/citología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/genética , Animales , Diferenciación Celular , Células Cultivadas , Pulpa Dental/metabolismo , Dentina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Metaloproteinasa 11 de la Matriz/metabolismo , Metaloproteinasa 20 de la Matriz/genética , Ratones , Odontoblastos/metabolismo , Especificidad de Órganos , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Porcinos
7.
PLoS One ; 12(8): e0183516, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837676

RESUMEN

Anaplastic lymphoma kinase (ALK), which is a receptor tyrosine kinase, is essentially and transiently expressed in the developing nervous system. Here we examined the functional role of the ALK gene in glioblastomas (GBMs). In clinical samples of GBMs, high ALK expression without gene rearrangements or mutations was frequently observed in perivascular lesions, in contrast to the relatively low expression in the perinecrotic areas, which was positively correlated with N-myc and phosphorylated (p) Stat3 scores and Ki-67 labeling indices. ALK immunoreactivity was also found to be associated with neovascular features including vascular co-option and vascular mimicry. In astrocytoma cell lines, cells stably overexpressing full-length ALK showed an increase in expression of pStat3 and pAkt proteins, as well as hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) mRNAs, in contrast to cells with knockdown of endogenous ALK which showed decreased expression of these molecules. Transfection of the constitutively active form of Stat3 induced an increase in HIF-1α promoter activity, and the overexpression of HIF-1α in turn resulted in enhancement of VEGF-A promoter activity. In addition, cells with overexpression or knockdown of ALK also showed a tendency toward increased and decreased proliferation, respectively, through changes in expression of pAkt and pStat3. Finally, ALK promoter was significantly activated by transfection of Sox4 and N-myc, which are known to contribute to neuronal properties. These findings therefore suggest that N-myc/Sox4-mediated ALK signaling cascades containing Stat3, Akt, HIF-1α, and VEGF-A confer multiple advantages to tumor growth through alterations in neovascularization and cell proliferation in GBMs.


Asunto(s)
Neoplasias Encefálicas/patología , Proliferación Celular , Glioblastoma/patología , Neovascularización Patológica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Quinasa de Linfoma Anaplásico , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Humanos , Inmunohistoquímica , Pronóstico
8.
Oncotarget ; 8(38): 63646-63664, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28969018

RESUMEN

To identify proteins involved in ovarian clear cell carcinoma (OCCCa), shotgun proteomics analysis was applied using formalin-fixed and paraffin-embedded samples of ovarian carcinoma. Analysis of 1521 proteins revealed that 52 were differentially expressed between four OCCCa and 12 non-OCCCa samples. Of the highly expressed proteins in OCCCa, we focused on left-right determination factor (LEFTY), a novel member of the transforming growth factor-ß superfamily. In 143 cases of ovarian epithelial carcinoma including 99 OCCCas and 44 non-OCCCas, LEFTY expression at both mRNA and protein levels was significantly higher in OCCCas compared with non-OCCCas, with the mRNA expression of LEFTY1 being predominant compared to that of LEFTY2. OCCCa cells stably overexpressing LEFTY1 showed reduced cell proliferation, along with decreased pSmad2 expression, and also either displayed an activated p53/p21waf1 pathway or increased p27kip1 expression, directly or indirectly. Moreover, the treatment of stable cell lines with cisplatin led to increased apoptotic cells, together with the inhibition of protein expression of a pSmad2-mediated X-linked inhibitor of apoptosis and a decreased bcl2/bax ratio. Blocking LEFTY1 expression with a specific short hairpin RNA inhibited cisplatin-induced apoptosis, probably through the increased expression of both XIAP and bcl2, but not bax. In clinical samples, a significantly higher number of apoptotic cells and lower Ki-67 labeling indices were observed in OCCCas with a high LEFTY score relative to those with a low score. These findings suggest that LEFTY may be an excellent OCCCa-specific molecular marker, which has anti-tumor effects in altering cell proliferation and cellular susceptibility to apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA