Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Free Radic Biol Med ; 44(3): 332-42, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17963706

RESUMEN

The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Inestabilidad Genómica , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Daño del ADN , Guanina/análogos & derivados , Guanina/análisis , Guanina/metabolismo , Células HeLa , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Ratones , Proteína 2 Homóloga a MutS/genética , Mutagénesis , NADPH Oxidasa 1 , NADPH Oxidasas/genética
2.
Mol Cell Biol ; 24(1): 465-74, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14673178

RESUMEN

Oxidation is a common form of DNA damage to which purines are particularly susceptible. We previously reported that oxidized dGTP is potentially an important source of DNA 8-oxodGMP in mammalian cells and that the incorporated lesions are removed by DNA mismatch repair (MMR). MMR deficiency is associated with a mutator phenotype and widespread microsatellite instability (MSI). Here, we identify oxidized deoxynucleoside triphosphates (dNTPs) as an important cofactor in this genetic instability. The high spontaneous hprt mutation rate of MMR-defective msh2(-/-) mouse embryonic fibroblasts was attenuated by expression of the hMTH1 protein, which degrades oxidized purine dNTPs. A high level of hMTH1 abolished their mutator phenotype and restored the hprt mutation rate to normal. Molecular analysis of hprt mutants showed that the presence of hMTH1 reduced the incidence of mutations in all classes, including frameshifts, and also implicated incorporated 2-oxodAMP in the mutator phenotype. In hMSH6-deficient DLD-1 human colorectal carcinoma cells, overexpression of hMTH1 markedly attenuated the spontaneous mutation rate and reduced MSI. It also reduced the incidence of -G and -A frameshifts in the hMLH1-defective DU145 human prostatic cancer cell line. Our findings indicate that incorporation of oxidized purines from the dNTP pool may contribute significantly to the extreme genetic instability of MMR-defective human tumors.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN , Reparación del ADN/genética , Desoxirribonucleótidos/metabolismo , Inestabilidad Genómica , Oxidación-Reducción , Animales , Secuencia de Bases , Ratones , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
3.
PLoS One ; 5(8): e12070, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20706593

RESUMEN

BACKGROUND: The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/-) mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh(-/-) phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/-) mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/-) mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+) regulatory T cells were observed only in Mutyh(-/-) mice. CONCLUSIONS: The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.


Asunto(s)
Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , ADN Glicosilasas/genética , Reparación del ADN , Animales , Colitis Ulcerosa/inducido químicamente , ADN/genética , ADN/metabolismo , ADN Glicosilasas/deficiencia , ADN Glicosilasas/metabolismo , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Inestabilidad de Microsatélites/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA