Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 16(30): e2002076, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32578351

RESUMEN

Additive manufacturing promises high flexibility and customized product design. Powder bed fusion processes use a laser to melt a polymer powder at predefined locations and iterate the scheme to build 3D objects. The design of flowable powders is a critical parameter for a successful fabrication process that currently limits the choice of available materials. Here, a bottom-up process is introduced to fabricate tailored polymer- and composite supraparticles for powder-based additive manufacturing processes by controlled aggregation of colloidal primary particles. These supraparticles exhibit a near-spherical shape and tailored composition, morphology, and surface roughness. These parameters can be precisely controlled by the mixing and size ratio of the primary particles. Polystyrene/silica composite particles are chosen as a model system to establish structure-property relations connecting shape, morphology, and surface roughness to the adhesion within the powder, which is accessed by tensile strength measurements. The adhesive properties are then connected to powder flowability and it is shown that the resulting powders allow the formation of dense powder films with uniform coverage. Finally, successful powder bed fusion is demonstrated by producing macroscopic single layer specimens with uniform distribution of nanoscale silica additives.

2.
ACS Appl Mater Interfaces ; 14(14): 16735-16745, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353481

RESUMEN

Liquid-infused surfaces offer a versatile approach to create self-cleaning coatings. In such coatings, a thin film of a fluid lubricant homogeneously coats the substrate and thus prevents direct contact with a second, contaminating liquid. For stable repellency, the interfacial energies need to be controlled to ensure that the lubricant is not replaced by the contaminating liquid. Here, we introduce the concept of self-functionalizing lubricants. Functional molecular species that chemically match the lubricant but possess selective anchor groups are dissolved in the lubricant and self-adhere to the surface, forming the required surface chemistry in situ from within the applied lubricant layer. To add flexibility to the self-functionalizing concept, the substrate is first primed with a thin polydopamine base layer, which can be deposited to nearly any substrate material from aqueous solutions and retains reactivity toward electron-donating groups such as amines. The temporal progression of the in situ functionalization is investigated by ellipsometry and quartz crystal microbalance and correlated to macroscopic changes in contact angle and contact angle hysteresis. The flexibility of the approach is underlined by creating repellent coatings with various substrate/lubricant combinations. The prepared liquid-infused surfaces significantly reduce cement adhesion and provide easy-to-clean systems under real-world conditions on shoe soles.

3.
Nat Commun ; 13(1): 2840, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606364

RESUMEN

After spilling coffee, a tell-tale stain is left by the drying droplet. This universal phenomenon, known as the coffee ring effect, is observed independent of the dispersed material. However, for many technological processes such as coating techniques and ink-jet printing a uniform particle deposition is required and the coffee ring effect is a major drawback. Here, we present a simple and versatile strategy to achieve homogeneous drying patterns using surface-modified particle dispersions. High-molecular weight surface-active polymers that physisorb onto the particle surfaces provide enhanced steric stabilization and prevent accumulation and pinning at the droplet edge. In addition, in the absence of free polymer in the dispersion, the surface modification strongly enhances the particle adsorption to the air/liquid interface, where they experience a thermal Marangoni backflow towards the apex of the drop, leading to uniform particle deposition after drying. The method is independent of particle shape and applicable to a variety of commercial pigment particles and different dispersion media, demonstrating the practicality of this work for everyday processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA