Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074873

RESUMEN

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Asunto(s)
Nociceptores/efectos de los fármacos , Papio/metabolismo , Péptidos/farmacología , Venenos de Araña/farmacología , Arañas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Canales Iónicos/metabolismo , Ratones , Dolor/tratamiento farmacológico , Tetrodotoxina/farmacología
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131940

RESUMEN

Venoms are excellent model systems for studying evolutionary processes associated with predator-prey interactions. Here, we present the discovery of a peptide toxin, MIITX2-Mg1a, which is a major component of the venom of the Australian giant red bull ant Myrmecia gulosa and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw. These data reveal a previously undescribed venom mode of action, highlight a role for ErbB receptors in mammalian pain signaling, and provide an example of molecular mimicry driven by defensive selection pressure.


Asunto(s)
Venenos de Hormiga/química , Hormigas/fisiología , Hipersensibilidad a las Drogas , Factor de Crecimiento Epidérmico/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Mordeduras y Picaduras de Insectos , Ratones , Imitación Molecular
3.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398368

RESUMEN

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Venenos de Araña/química , Animales , Proteínas de Artrópodos/análisis , Australia , Dípteros/efectos de los fármacos , Disulfuros , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Espectrometría de Masas , Péptidos/análisis , Péptidos/química , Péptidos/genética , Filogenia , Conformación Proteica , Proteómica/métodos , Venenos de Araña/genética , Venenos de Araña/toxicidad , Arañas/genética
4.
Proteins ; 88(3): 485-502, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31589791

RESUMEN

The cross-strand disulfides (CSDs) found in ß-hairpin antimicrobial peptides (ß-AMPs) show a unique disulfide geometry that is characterized by unusual torsion angles and a short Cα-Cα distance. While the sequence and disulfide bond connectivity of disulfide-rich peptides is well studied, much less is known about the disulfide geometry found in CSDs and their role in the stability of ß-AMPs. To address this, we solved the nuclear magnetic resonance (NMR) structure of the ß-AMP gomesin (Gm) at 278, 298, and 310 K, examined the disulfide bond geometry of over 800 disulfide-rich peptides, and carried out extensive molecular dynamics (MD) simulation of the peptides Gm and protegrin. The NMR data suggests Cα-Cα distances characteristic for CSDs are independent of temperature. Analysis of disulfide-rich peptides from the Protein Data Bank revealed that right-handed and left-handed rotamers are equally likely in CSDs. The previously reported preference for right-handed rotamers was likely biased by restricting the analysis to peptides and proteins solved using X-ray crystallography. Furthermore, data from MD simulations showed that the short Cα-Cα distance is critical for the stability of these peptides. The unique disulfide geometry of CSDs poses a challenge to biomolecular force fields and to retain the stability of ß-hairpin fold over long simulation times, restraints on the torsion angles might be required.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Disulfuros/química , Animales , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Disulfuros/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Arañas/química , Estereoisomerismo , Temperatura , Termodinámica
5.
Proc Natl Acad Sci U S A ; 114(14): 3750-3755, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320941

RESUMEN

Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal death following ischemic stroke in rodents. Here, we demonstrate that Hi1a, a disulfide-rich spider venom peptide, is highly neuroprotective in a focal model of ischemic stroke. Nuclear magnetic resonance structural studies reveal that Hi1a comprises two homologous inhibitor cystine knot domains separated by a short, structurally well-defined linker. In contrast with known ASIC1a inhibitors, Hi1a incompletely inhibits ASIC1a activation in a pH-independent and slowly reversible manner. Whole-cell, macropatch, and single-channel electrophysiological recordings indicate that Hi1a binds to and stabilizes the closed state of the channel, thereby impeding the transition into a conducting state. Intracerebroventricular administration to rats of a single small dose of Hi1a (2 ng/kg) up to 8 h after stroke induction by occlusion of the middle cerebral artery markedly reduced infarct size, and this correlated with improved neurological and motor function, as well as with preservation of neuronal architecture. Thus, Hi1a is a powerful pharmacological tool for probing the role of ASIC1a in acid-mediated neuronal injury and various neurological disorders, and a promising lead for the development of therapeutics to protect the brain from ischemic injury.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/administración & dosificación , Canales Iónicos Sensibles al Ácido/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Venenos de Araña/administración & dosificación , Accidente Cerebrovascular/tratamiento farmacológico , Bloqueadores del Canal Iónico Sensible al Ácido/química , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Fármacos Neuroprotectores/farmacología , Ratas , Venenos de Araña/química , Venenos de Araña/farmacología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo
6.
Cell Mol Life Sci ; 75(24): 4511-4524, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30109357

RESUMEN

Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric ß-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.


Asunto(s)
Venenos de Cnidarios/química , Péptidos/química , Canales de Potasio con Entrada de Voltaje/química , Anémonas de Mar/química , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Evolución Molecular , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica , Pliegue de Proteína , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Transcriptoma
7.
Biochim Biophys Acta ; 1860(11 Pt A): 2553-2562, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27474999

RESUMEN

BACKGROUND: Most ant venoms consist predominantly of small linear peptides, although some contain disulfide-linked peptides as minor components. However, in striking contrast to other ant species, some Anochetus venoms are composed primarily of disulfide-rich peptides. In this study, we investigated the venom of the ant Anochetus emarginatus with the aim of exploring these novel disulfide-rich peptides. METHODS: The venom peptidome was initially investigated using a combination of reversed-phase HPLC and mass spectrometry, then the amino acid sequences of the major peptides were determined using a combination of Edman degradation and de novo MS/MS sequencing. We focused on one of these peptides, U1-PONTX-Ae1a (Ae1a), because of its novel sequence, which we predicted would form a novel 3D fold. Ae1a was chemically synthesized using Fmoc chemistry and its 3D structure was elucidated using NMR spectroscopy. The peptide was then tested for insecticidal activity and its effect on a range of human ion channels. RESULTS: Seven peptides named poneritoxins (PONTXs) were isolated and sequenced. The three-dimensional structure of synthetic Ae1a revealed a novel, compact scaffold in which a C-terminal ß-hairpin is connected to the N-terminal region via two disulfide bonds. Synthetic Ae1a reversibly paralyzed blowflies and inhibited human L-type voltage-gated calcium channels (CaV1). CONCLUSIONS: Poneritoxins from Anochetus emarginatus venom are a novel class of toxins that are structurally unique among animal venoms. GENERAL SIGNIFICANCE: This study demonstrates that Anochetus ant venoms are a rich source of novel ion channel modulating peptides, some of which might be useful leads for the development of biopesticides.


Asunto(s)
Venenos de Hormiga/química , Secuencias de Aminoácidos , Disulfuros/química
8.
Mol Pharmacol ; 88(6): 1002-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26429937

RESUMEN

Many spider-venom peptides are known to modulate the activity of the voltage-gated sodium (NaV) subtype 1.7 (NaV1.7) channel, which has emerged as a promising analgesic target. In particular, a class of spider-venom peptides (NaSpTx1) has been found to potently inhibit NaV1.7 (nanomolar IC50), and has been shown to produce analgesic effects in animals. However, one member of this family [µ-TRTX-Hhn2b (Hhn2b)] does not inhibit mammalian NaV channels expressed in dorsal root ganglia at concentrations up to 100 µM. This peptide is classified as a NaSpTx1 member by virtue of its cysteine spacing and sequence conservation over functionally important residues. Here, we have performed detailed structural and functional analyses of Hhn2b, leading us to identify two nonpharmacophore residues that contribute to human NaV1.7 (hNaV1.7) inhibition by nonoverlapping mechanisms. These findings allowed us to produce a double mutant of Hhn2b that shows nanomolar inhibition of hNaV1.7. Traditional structure/function analysis did not provide sufficient resolution to identify the mechanism underlying the observed gain of function. However, by solving the high-resolution structure of both the wild-type and mutant peptides using advanced multidimensional NMR experiments, we were able to uncover a previously unknown network of interactions that stabilize the pharmacophore region of this class of venom peptides. We further monitored the lipid binding properties of the peptides and identified that one of the key amino acid substitutions also selectively modulates the binding of the peptide to anionic lipids. These results will further aid the development of peptide-based analgesics for the treatment of chronic pain.


Asunto(s)
Analgésicos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Ingeniería Genética/métodos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Fragmentos de Péptidos/metabolismo , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Analgésicos/química , Animales , Células CHO , Cricetinae , Cricetulus , Femenino , Genes de Cambio/genética , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Venenos de Araña/química , Venenos de Araña/genética , Xenopus laevis
9.
J Biol Chem ; 288(52): 36796-809, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24187131

RESUMEN

We have determined the structure of the human integrin α1I domain bound to a triple-helical collagen peptide. The structure of the α1I-peptide complex was investigated using data from NMR, small angle x-ray scattering, and size exclusion chromatography that were used to generate and validate a model of the complex using the data-driven docking program, HADDOCK (High Ambiguity Driven Biomolecular Docking). The structure revealed that the α1I domain undergoes a major conformational change upon binding of the collagen peptide. This involves a large movement in the C-terminal helix of the αI domain that has been suggested to be the mechanism by which signals are propagated in the intact integrin receptor. The structure suggests a basis for the different binding selectivity observed for the α1I and α2I domains. Mutational data identify residues that contribute to the conformational change observed. Furthermore, small angle x-ray scattering data suggest that at low collagen peptide concentrations the complex exists in equilibrium between a 1:1 and 2:1 α1I-peptide complex.


Asunto(s)
Colágeno/química , Integrina alfa1/química , Péptidos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Humanos , Integrina alfa1/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
Structure ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38889720

RESUMEN

Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.

11.
Nat Commun ; 14(1): 1036, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823422

RESUMEN

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Venenos de Escorpión , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Rianodina/farmacología , Secuencia de Aminoácidos , Péptidos/química , Venenos de Escorpión/farmacología , Venenos de Escorpión/química
12.
J Med Chem ; 66(4): 3045-3057, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749163

RESUMEN

Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.


Asunto(s)
Precursor de Proteína beta-Amiloide , Péptidos Cíclicos , Ciclización , Péptidos Cíclicos/química , Estructura Secundaria de Proteína , Precursor de Proteína beta-Amiloide/química , Unión Proteica , Fosfotirosina/química
13.
Commun Chem ; 6(1): 48, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871076

RESUMEN

Macrocyclisation of proteins and peptides results in a remarkable increase in structural stability, making cyclic peptides and proteins of great interest in drug discovery-either directly as drug leads or as in the case of cyclised nanodiscs (cNDs), as tools for studies of trans-membrane receptors and membrane-active peptides. Various biological methods have been developed that are capable of yielding head-to-tail macrocyclised products. Recent advances in enzyme-catalysed macrocyclisation include discovery of new enzymes or design of new engineered enzymes. Here, we describe the engineering of a self-cyclising "autocyclase" protein, capable of performing a controllable unimolecular reaction for generation of cyclic biomolecules in high yield. We characterise the self-cyclisation reaction mechanism, and demonstrate how the unimolecular reaction path provides alternative avenues for addressing existing challenges in enzymatic cyclisation. We use the method to produce several notable cyclic peptides and proteins, demonstrating how autocyclases offer a simple, alternative way to access a vast diversity of macrocyclic biomolecules.

14.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117223

RESUMEN

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Asunto(s)
Toxinas Biológicas , Urtica dioica , Australia , Dolor , Péptidos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
15.
Biomedicines ; 10(5)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35625803

RESUMEN

Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we employed our spider venom library and uncovered that Avicularia spec. ("Amazonas Purple", Peru) tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major peak in the venom. Both native (4.1 µM) and synthetic ω-Avsp1a (10 µM) inhibited 90% of CaV3.1 and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our results suggest that domain-1 of CaV3.3 is important for the inhibitory effect of ω-Avsp1a on T-type calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the inhibitory effect of ω-Avsp1a.

16.
ACS Chem Neurosci ; 13(8): 1245-1250, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35357806

RESUMEN

α-Conotoxins that target muscle nicotinic acetylcholine receptors (nAChRs) commonly fall into two structural classes, frameworks I and II containing two and three disulfide bonds, respectively. Conotoxin SII is the sole member of the cysteine-rich framework II with ill-defined interactions at the nAChRs. Following directed synthesis of α-SII, NMR analysis revealed a well-defined structure containing a 310-helix frequently employed by framework I α-conotoxins; α-SII acted at the muscle nAChR with half-maximal inhibitory concentrations (IC50) of 120 nM (adult) and 370 nM (fetal) though weakly at neuronal nAChRs. Truncation of α-SII to a two disulfide bond amidated peptide with framework I disulfide connectivity led to similar activity. Surprisingly, the more constrained α-SII was less stable under mild reducing conditions and displayed a unique docking mode at the nAChR.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Secuencia de Aminoácidos , Conotoxinas/farmacología , Cisteína , Disulfuros , Músculos/metabolismo , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo
17.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35818835

RESUMEN

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Asunto(s)
Antineoplásicos , Melanoma , Adenosina Trifosfato , Animales , Antineoplásicos/farmacología , Calcio , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Mutación , Octopodiformes/química , Péptidos/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , ARN Mensajero , Especies Reactivas de Oxígeno , Taquicininas/genética , Taquicininas/uso terapéutico , Pez Cebra/genética
18.
Toxicon ; 202: 1-12, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34547307

RESUMEN

Endoparasitoid wasps use complex biochemical arsenals to suppress the normal humoral and cellular immune responses of their hosts in order to transform them into a suitable environment for development of their eggs and larvae. Venom injected during oviposition is a key component of this arsenal, but the functions of individual venom toxins are still poorly understood. Furthermore, there has been little investigation of the potential biotechnological use of these venom toxins, for example for control of agricultural pests. The endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) is a biocontrol agent reared in biofactories and released extensively in Brazil to control the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). The objectives of this work were to reveal venom components produced by C. flavipes and explore the function of a major venom peptide, Cf4. Using a combined proteomic/transcriptomic approach, we identified 38 putative venom toxins including both linear and disulfide-rich peptides, hydrolases, protease inhibitors, apolipophorins, lipid-binding proteins, and proteins of the odorant binding families. Because of its high abundance in the venom, we selected Cf4, a 33-residue peptide with three disulfide bonds, for synthesis and further characterization. We found that synthetic Cf4 reduced the capacity of D. saccharalis hemocytes to encapsulate foreign bodies without any effect on phenoloxidase activity, consistent with a role in disruption of the cellular host immune response. Feeding leaves coated with Cf4 to neonate D. saccharalis resulted in increased mortality and significantly reduced feeding compared to caterpillars fed untreated leaves, indicating that Cf4 is a potential candidate for insect pest control through ingestion. This study adds to our knowledge of endoparasitoid wasp venoms composition, host regulation mechanisms and their biotechnological potential for pest management.


Asunto(s)
Mariposas Nocturnas , Avispas , Animales , Femenino , Interacciones Huésped-Parásitos , Humanos , Recién Nacido , Péptidos , Proteómica , Venenos de Avispas
19.
Biochem Pharmacol ; 181: 113991, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32335140

RESUMEN

Dravet syndrome (DS) is a catastrophic epileptic encephalopathy characterised by childhood-onset polymorphic seizures, multiple neuropsychiatric comorbidities, and increased risk of sudden death. Heterozygous loss-of-function mutations in one allele of SCN1A, the gene encoding the voltage-gated sodium channel 1.1 (NaV1.1), lead to DS. NaV1.1 is primarily found in the axon initial segment of fast-spiking GABAergic inhibitory interneurons in the brain, and the principle mechanism proposed to underlie seizure genesis in DS is loss of inhibitory input due to dysfunctional firing of GABAergic interneurons. We hypothesised that DS symptoms could be ameliorated by a drug that activates the reduced population of functional NaV1.1 channels in DS interneurons. We recently identified two homologous disulfide-rich spider-venom peptides (Hm1a and Hm1b) that selectively potentiate NaV1.1, and showed that selective activation of NaV1.1 by Hm1a restores the function of inhibitory interneurons in a mouse model of DS. Here we produced recombinant Hm1b (rHm1b) using an E. coli periplasmic expression system, and examined its selectivity against a panel of human NaV subtypes using whole-cell patch-clamp recordings. rHm1b is a potent and highly selective agonist of NaV1.1 and NaV1.3 (EC50 ~12 nM for both). rHm1b is a gating modifier that shifts the voltage dependence of channel activation and inactivation to hyperpolarised and depolarised potentials respectively, presumably by interacting with the channel's voltage-sensor domains. Like Hm1a, the structure of rHm1b determined by using NMR revealed a classical inhibitor cystine knot (ICK) motif. However, we show that rHm1b is an order of magnitude more stable than Hm1a in human cerebrospinal fluid. Overall, our data suggest that rHm1b is an exciting lead for a precision therapeutic targeted against DS.


Asunto(s)
Epilepsias Mioclónicas/tratamiento farmacológico , Interneuronas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Péptidos/farmacología , Agonistas de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/metabolismo , Células HEK293 , Humanos , Interneuronas/metabolismo , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Homología de Secuencia de Aminoácido , Agonistas de los Canales de Sodio/química , Venenos de Araña/metabolismo
20.
ACS Pharmacol Transl Sci ; 3(1): 119-134, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32259093

RESUMEN

Voltage-gated sodium (NaV) channels play a fundamental role in normal neurological function, especially via the initiation and propagation of action potentials. The NaV1.1 subtype is found in inhibitory interneurons of the brain and it is essential for maintaining a balance between excitation and inhibition in neuronal networks. Heterozygous loss-of-function mutations of SCN1A, the gene encoding NaV1.1, underlie Dravet syndrome (DS), a severe pediatric epilepsy. We recently demonstrated that selective inhibition of NaV1.1 inactivation prevents seizures and premature death in a mouse model of DS. Thus, selective modulators of NaV1.1 might be useful therapeutics for treatment of DS as they target the underlying molecular deficit. Numerous scorpion-venom peptides have been shown to modulate the activity of NaV channels, but little is known about their activity at NaV1.1. Here we report the isolation, sequence, three-dimensional structure, recombinant production, and functional characterization of two peptidic modulators of NaV1.1 from venom of the buthid scorpion Hottentotta jayakari. These peptides, Hj1a and Hj2a, are potent agonists of NaV1.1 (EC50 of 17 and 32 nM, respectively), and they present dual α/ß activity by modifying both the activation and inactivation properties of the channel. NMR studies of rHj1a indicate that it adopts a cystine-stabilized αß fold similar to known scorpion toxins. Although Hj1a and Hj2a have only limited selectivity for NaV1.1, their unusual dual mode of action provides an alternative approach to the development of selective NaV1.1 modulators for the treatment of DS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA