Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Biol Evol ; 38(7): 2715-2731, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33674876

RESUMEN

SARS-CoV-2 infects humans through the binding of viral S-protein (spike protein) to human angiotensin I converting enzyme 2 (ACE2). The structure of the ACE2-S-protein complex has been deciphered and we focused on the 27 ACE2 residues that bind to S-protein. From human sequence databases, we identified nine ACE2 variants at ACE2-S-protein binding sites. We used both experimental assays and protein structure analysis to evaluate the effect of each variant on the binding affinity of ACE2 to S-protein. We found one variant causing complete binding disruption, two and three variants, respectively, strongly and mildly reducing the binding affinity, and two variants strongly enhancing the binding affinity. We then collected the ACE2 gene sequences from 57 nonhuman primates. Among the 6 apes and 20 Old World monkeys (OWMs) studied, we found no new variants. In contrast, all 11 New World monkeys (NWMs) studied share four variants each causing a strong reduction in binding affinity, the Philippine tarsier also possesses three such variants, and 18 of the 19 prosimian species studied share one variant causing a strong reduction in binding affinity. Moreover, one OWM and three prosimian variants increased binding affinity by >50%. Based on these findings, we proposed that the common ancestor of primates was strongly resistant to and that of NWMs was completely resistant to SARS-CoV-2 and so is the Philippine tarsier, whereas apes and OWMs, like most humans, are susceptible. This study increases our understanding of the differences in susceptibility to SARS-CoV-2 infection among primates.


Asunto(s)
COVID-19 , Resistencia a la Enfermedad/genética , Peptidil-Dipeptidasa A , SARS-CoV-2 , Animales , COVID-19/genética , COVID-19/inmunología , Chlorocebus aethiops , Humanos , Macaca mulatta , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología
2.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409412

RESUMEN

Entry inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to control the outbreak of coronavirus disease 2019 (COVID-19). This study developed a robust and straightforward assay that detected the molecular interaction between the receptor-binding domain (RBD) of viral spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor in just 10 min. A drug library of 1068 approved compounds was used to screen for SARS-CoV2 entry inhibition, and 9 active drugs were identified as specific pseudovirus entry inhibitors. A plaque reduction neutralization test using authentic SARS-CoV-2 virus in Vero E6 cells confirmed that 2 of these drugs (Etravirine and Dolutegravir) significantly inhibited the infection of SARS-CoV-2. With molecular docking, we showed that both Etravirine and Dolutegravir are preferentially bound to primary ACE2-interacting residues on the RBD domain, implying that these two drug blocks may prohibit the viral attachment of SARS-CoV-2. We compared the neutralizing activities of these entry inhibitors against different pseudoviruses carrying spike proteins from alpha, beta, gamma, and delta variants. Both Etravirine and Dolutegravir showed similar neutralizing activities against different variants, with EC50 values between 4.5 to 5.8 nM for Etravirine and 10.2 to 22.9 nM for Dolutegravir. These data implied that Etravirine and Dolutegravir may serve as general spike inhibitors against dominant viral variants of SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Simulación del Acoplamiento Molecular , ARN Viral , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Small ; 13(48)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29063668

RESUMEN

Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m-2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices.

4.
Antiviral Res ; 207: 105417, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122619

RESUMEN

Naturally evolved immune-escape PreS2 mutant is an oncogenic caveat of liver cirrhosis and hepatocellular carcinoma (HCC) during chronic hepatitis B virus (HBV) infection. PreS2 mutant is prevalent in above 50% of patients with HCC. In addition, intrahepatic expression of PreS2 mutant large surface antigen (PreS2-LHBS) induces endoplasmic reticulum stress, mitochondria dysfunction, cytokinesis failure, and subsequent chromosome hyperploidy. As PreS2-LHBS has no enzymatic activity, the development of PreS2-specific inhibitors can be challenging. In this study, we aim to identify inhibitors of PreS2-LHBS via the induction of protein-specific degradation. We set up a large-scale protein stability reporter platform and applied an FDA-approved drug library for the screening. We identified ABT199 as a negative modulator of PreS2-LHBS, which induced the degradation of PreS2-LHBS without affecting the general cell viability in both hepatoma and immortalized hepatocytes. Next, by affinity purification screening, we found that PreS2-LHBS interacted with HSC70, a microautophagy mediating chaperone. Simultaneously, inhibitions of lysosomal degradation or microautophagy restored the expression of PreS2-LHBS, suggesting microautophagy is involved in ABT199-induced PreS2-LHBS degradation. Notably, a 24-hr treatment of ABT199 was sufficient for the reduction of DNA damage and cytokinesis failure in PreS2-LHBS expressing hepatocytes. In addition, a persistent treatment of ABT199 for 3 weeks reversed chromosome hyperploidy in PreS2-LHBS cells and suppressed anchorage-independent growth of HBV-positive hepatoma cells. Together, this study identified ABT-199 as a negative modulator of PreS2-LHBS via mediating microautophagy. Our results indicate that long-term inhibition of PreS2-LHBS may serve as a novel strategy for the therapeutic prevention of HBV-mediated HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Antígenos de Superficie , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Humanos , Microautofagia
5.
Biomed Res Int ; 2016: 4013071, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27403425

RESUMEN

Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease.


Asunto(s)
Alginatos/química , Cápsulas/química , Preparaciones de Acción Retardada/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Tracto Gastrointestinal/metabolismo , Administración Oral , Animales , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/síntesis química , Difusión , Composición de Medicamentos/métodos , Medicamentos Herbarios Chinos/administración & dosificación , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Distribución Tisular , Pez Cebra
6.
Medicine (Baltimore) ; 95(50): e5598, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27977595

RESUMEN

The aim of this study was to determine the age-period-cohort (APC) effects on the rate of infection-related emergency department (ED) visits from septicemia for predicting the same in recent periods.In our study, we investigated the longitudinal trends in septicemia-related visit rates. Using an APC model to decompose the septicemia visit rates into the effects of age, time period, and cohort, and examine whether their effects varied by sex.The septicemia ED visit rate was classified as the International Classification of Disease Code 038 by primary and secondary diagnosis between 1998 and 2012.In both males and females, the visit rate of septicemia showed an increase from 2003 through 2012. An increase in septicemia visit rate after 2003 was observed in all age groups. An APC model indicated a reversal increasing period effect, which increased prominently from 2003 to 2012 in both males and females. The age effect showed an increasing trend. The cohort effect tended to show a slight oscillation from 1913 to 1988. With reference to the prediction of the logarithms of the age-specific 5-year visit rates, we observed that the younger cohorts exhibited a slightly increasing trend, as compared to the older cohorts.The period effect can explain the increase in septicemia visit rates, suggesting the role of screening for septicemia. Furthermore, it is well known that aging is a relevant risk variable for infectious diseases. The present study concludes that the aged population exhibited a strong increasing future trend for septicemia-related ED visit rates.


Asunto(s)
Servicio de Urgencia en Hospital/estadística & datos numéricos , Sepsis/epidemiología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Sepsis/terapia , Factores Sexuales , Taiwán/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA