RESUMEN
Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.
Asunto(s)
Metilación de ADN , Epigenoma , Islas de CpG , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , PulmónRESUMEN
BACKGROUND: Metabolic regulation plays a significant role in energy homeostasis, and adolescence is a crucial life stage for the development of cardiometabolic disease (CMD). This study aims to investigate the genetic determinants of metabolic biomarkers-adiponectin, leptin, ghrelin, and orexin-and their associations with CMD risk factors. METHODS: We characterized the genetic determinants of the biomarkers among Hispanic/Latino adolescents of the Santiago Longitudinal Study (SLS) and identified the cumulative effects of genetic variants on adiponectin and leptin using biomarker polygenic risk scores (PRS). We further investigated the direct and indirect effect of the biomarker PRS on downstream body fat percent (BF%) and glycemic traits using structural equation modeling. RESULTS: We identified putatively novel genetic variants associated with the metabolic biomarkers. A substantial amount of biomarker variance was explained by SLS-specific PRS, and the prediction was improved by including the putatively novel loci. Fasting blood insulin and insulin resistance were associated with PRS for adiponectin, leptin, and ghrelin, and BF% was associated with PRS for adiponectin and leptin. We found evidence of substantial mediation of these associations by the biomarker levels. CONCLUSIONS: The genetic underpinnings of metabolic biomarkers can affect the early development of CMD, partly mediated by the biomarkers. IMPACT: This study characterized the genetic underpinnings of four metabolic hormones and investigated their potential influence on adiposity and insulin biology among Hispanic/Latino adolescents. Fasting blood insulin and insulin resistance were associated with polygenic risk score (PRS) for adiponectin, leptin, and ghrelin, with evidence of some degree of mediation by the biomarker levels. Body fat percent (BF%) was also associated with PRS for adiponectin and leptin. This provides important insight on biological mechanisms underlying early metabolic dysfunction and reveals candidates for prevention efforts. Our findings also highlight the importance of ancestrally diverse populations to facilitate valid studies of the genetic architecture of metabolic biomarker levels.
Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Adiponectina/genética , Adolescente , Biomarcadores , Enfermedades Cardiovasculares/genética , Ghrelina/genética , Hispánicos o Latinos/genética , Humanos , Insulina , Resistencia a la Insulina/genética , Leptina , Estudios Longitudinales , OrexinasRESUMEN
Eosinophilic Esophagitis (EoE) is an esophageal allergic inflammatory disorder triggered by food proteins. Symptoms of EoE are variable within and between individuals. Presenting symptoms may include dysphagia, food bolus impaction, dyspepsia, or more subtle symptoms such as feeding disorders, regurgitation sensation, or nausea. The development and validation of a pediatric EoE patient self-reported and parent proxy-reported outcome symptom scoring tool was created by Franciosi et al. published in BMJ 2011, titled the Pediatric Eosinophilic Esophagitis Symptom Score (PEESS™ v2.0). To date, its use is largely for research purposes. We propose to evaluate the implementation of the PEESS™ v2.0 in a prospective interventional controlled clinical practice. The study included 620 patients over an 18-month period. Surveys were delivered and administered digitally every month through the MyGeisinger.org Patient Portal. Our analysis demonstrated symptom severity and symptom frequency scores significantly improved over time. However, counter to our hypothesis, patients who completed the PEESS™v2.0 ultimately had higher EoE-related health care utilization of office visits and endoscopies compared with those who did not complete the PEESS™v2.0. This could be related to greater awareness of disease activity and/or increased willingness to seek care. Our study, in the context of mobile health tool and patient-reported outcome trends, represents an opportunity for improved disease monitoring at-home within the field of eosinophilic gastrointestinal diseases.
Asunto(s)
Trastornos de Deglución , Esofagitis Eosinofílica , Niño , Trastornos de Deglución/etiología , Enteritis , Eosinofilia , Esofagitis Eosinofílica/complicaciones , Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/terapia , Gastritis , Humanos , Náusea , Medición de Resultados Informados por el Paciente , Estudios ProspectivosRESUMEN
Eosinophilic esophagitis (EoE) is an esophageal allergic inflammatory disorder often presenting with infant/toddler gastroesophageal reflux symptoms refractory to treatment, including acid suppression trials with histamine H2 antagonists and proton pump inhibitors. We propose to evaluate the impact of infant acid suppressant exposure in EoE. Geisinger's pediatric EoE cases were matched to controls (1:5 EoE case control ratio) using age, race, sex, and ages at other diagnoses of asthma, eczema, and environmental allergies, totaling 526 EoE cases and 2,630 controls. Comparisons between EoE cases and matched controls were tested with regard to rates of acid suppression use with H2 antagonists and PPIs during infancy. Our analyses found the use of acid suppression in infancy was positively associated with EoE: PPI (5.7% EoE cases vs. 1.6% controls; P < 0.0001), H2 antagonists (8.8% EoE cases vs. 4.5% controls; P < 0.0001). Additionally, analysis of EoE cases using acid suppression during infancy indicated a likelihood for the diagnosis with EoE at an earlier age. Early acid suppression use in infants is significantly associated with the diagnosis of EoE in childhood in this well-matched retrospective cohort study. The potential link warrants additional investigation. Our study further reinforces the evidence-based stewardship of acid suppressant use, especially in our most vulnerable populations.
Asunto(s)
Esofagitis Eosinofílica , Estudios de Casos y Controles , Niño , Esofagitis Eosinofílica/tratamiento farmacológico , Esofagitis Eosinofílica/epidemiología , Antagonistas de los Receptores H2 de la Histamina/uso terapéutico , Humanos , Lactante , Inhibidores de la Bomba de Protones/efectos adversos , Estudios RetrospectivosRESUMEN
Knowledge on genetic and environmental (G × E) interaction effects on cardiometabolic risk factors (CMRFs) in children is limited. The purpose of this study was to examine the impact of G × E interaction effects on CMRFs in Mexican American (MA) children (n = 617, ages 6-17 years). The environments examined were sedentary activity (SA), assessed by recalls from "yesterday" (SAy) and "usually" (SAu) and physical fitness (PF) assessed by Harvard PF scores (HPFS). CMRF data included body mass index (BMI), waist circumference (WC), fat mass (FM), fasting insulin (FI), homeostasis model of assessment-insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), systolic (SBP) and diastolic (DBP) blood pressure, and number of metabolic syndrome components (MSC). We examined potential G × E interaction in the phenotypic expression of CMRFs using variance component models and likelihood-based statistical inference. Significant G × SA interactions were identified for six CMRFs: BMI, WC, FI, HOMA-IR, MSC, and HDL, and significant G × HPFS interactions were observed for four CMRFs: BMI, WC, FM, and HOMA-IR. However, after correcting for multiple hypothesis testing, only WC × SAy, FM × SAy, and FI × SAu interactions became marginally significant. After correcting for multiple testing, most of CMRFs exhibited significant G × E interactions (Reduced G × E model vs. Constrained model). These findings provide evidence that genetic factors interact with SA and PF to influence variation in CMRFs, and underscore the need for better understanding of these relationships to develop strategies and interventions to effectively reduce or prevent cardiometabolic risk in children.
Asunto(s)
Enfermedades Cardiovasculares/genética , Interacción Gen-Ambiente , Síndrome Metabólico/genética , Americanos Mexicanos/genética , Aptitud Física , Conducta Sedentaria , Adolescente , Glucemia/metabolismo , Índice de Masa Corporal , Niño , Femenino , Variación Genética , Humanos , Funciones de Verosimilitud , Masculino , Modelos Genéticos , Herencia Multifactorial/genética , Factores de Riesgo , Circunferencia de la Cintura/genéticaRESUMEN
The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)-pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D-pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (sd 29) nmol/l for EA and 49 (sd 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1·1 ml in EA (95 % CI 0·9, 1·3; P<0·0001) and 1·8 ml (95 % CI 1·1, 2·5; P<0·0001) in AA (P race difference=0·06), and forced vital capacity (FVC) was higher by 1·3 ml in EA (95 % CI 1·0, 1·6; P<0·0001) and 1·5 ml (95 % CI 0·8, 2·3; P=0·0001) in AA (P race difference=0·56). Among EA, the 25(OH)D-FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)D, FVC was higher by 1·7 ml (95 % CI 1·1, 2·3) for current smokers and 1·7 ml (95 % CI 1·2, 2·1) for former smokers, compared with 0·8 ml (95 % CI 0·4, 1·2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations.
Asunto(s)
Envejecimiento , Cardiopatías/genética , Corazón/fisiología , Enfermedades Pulmonares/genética , Pulmón/fisiología , Pruebas de Función Respiratoria , Vitamina D/sangre , Adulto , Anciano , Población Negra , Estudios Transversales , Femenino , Volumen Espiratorio Forzado , Genoma Humano , Cardiopatías/prevención & control , Humanos , Enfermedades Pulmonares/prevención & control , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Estudios Prospectivos , Análisis de Regresión , Fumar , Capacidad Vital , Vitamina D/análogos & derivados , Población BlancaRESUMEN
BACKGROUND: Reduced renal excretion of uric acid plays a significant role in the development of hyperuricemia and gout in adults. Hyperuricemia has been associated with chronic kidney disease and cardiovascular disease in children and adults. There are limited genome-wide association studies associating genetic polymorphisms with renal urate excretion measures. Therefore, we investigated the genetic factors that influence the excretion of uric acid and related indices in 768 Hispanic children of the Viva La Familia Study. METHODS: We performed a genome-wide association analysis for 24-h urinary excretion measures such as urinary uric acid/urinary creatinine ratio, uric acid clearance, fractional excretion of uric acid, and glomerular load of uric acid in SOLAR, while accounting for non-independence among family members. RESULTS: All renal urate excretion measures were significantly heritable (p <2 × 10-6) and ranged from 0.41 to 0.74. Empirical threshold for genome-wide significance was set at p <1 × 10-7. We observed a strong association (p < 8 × 10-8) of uric acid clearance with a single nucleotide polymorphism (SNP) in zinc finger protein 446 (ZNF446) (rs2033711 (A/G), MAF: 0.30). The minor allele (G) was associated with increased uric acid clearance. Also, we found suggestive associations of uric acid clearance with SNPs in ZNF324, ZNF584, and ZNF132 (in a 72 kb region of 19q13; p <1 × 10-6, MAFs: 0.28-0.31). CONCLUSION: For the first time, we showed the importance of 19q13 region in the regulation of renal urate excretion in Hispanic children. Our findings indicate differences in inherent genetic architecture and shared environmental risk factors between our cohort and other pediatric and adult populations.
Asunto(s)
Proteínas de Unión al ADN/genética , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Factores de Transcripción/genética , Ácido Úrico/metabolismo , Adolescente , Biomarcadores/orina , Niño , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , MasculinoRESUMEN
PURPOSE: Published anthropometric measurements of the Latino eyelid are limited. This study describes features spanning the morphologic range from non-Latino whites to East Asians in the spectrum of the Latino eyelid. METHODS: A cross-sectional study of 68 people (32 Latinos, 18 non-Latino whites, and 18 East Asians, ages 18-39), approved by the Institutional Review Board and HIPAA-compliant, was performed. Saliva samples determined genetic components. Indirect anthropometric measurements were performed with ImageJ software. Eyelid measurements included margin reflex distance, palpebral fissure height, eyelid crease height, orbital height, horizontal fissure length, inner and outer canthal distances, medial and lateral canthal angles, and lateral canthal angle of inclination. Additionally, exophthalmometry and epicanthal folds were recorded. RESULTS: Analysis of 184 markers from HumanExome Chip data revealed distinct clustering patterns. Genetically, the Asian participants were in 1 group, the whites in another group, and the Latinos spanned the spectrum between these 2 groups. In Latinos, the inner canthal distance and lateral canthal angle of inclination were similar to Asians, whereas the eyelid crease spanned the range from Asians to whites. Half of the Latinos had epicanthal folds. CONCLUSIONS: Latinos possess a spectrum of eyelid features spanning the morphologic characteristics from those of non-Latino whites to those of East Asians. These normative data on Latinos from Texas and Mexico aid in the diagnoses of Latino eyelid disorders and are a reference for optimizing oculofacial surgery outcomes.
Asunto(s)
Antropometría/métodos , Párpados/anatomía & histología , Hispánicos o Latinos , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Valores de Referencia , Adulto JovenRESUMEN
BACKGROUND: The variation in serum uric acid concentrations is under significant genetic influence. Elevated SUA concentrations have been linked to increased risk for gout, kidney stones, chronic kidney disease, and cardiovascular disease whereas reduced serum uric acid concentrations have been linked to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Previously, we identified a novel locus on chromosome 3p26 affecting serum uric acid concentrations in Mexican Americans from San Antonio Family Heart Study. As a follow up, we examined genome-wide single nucleotide polymorphism data in an extended cohort of 1281 Mexican Americans from multigenerational families of the San Antonio Family Heart Study and the San Antonio Family Diabetes/Gallbladder Study. We used a linear regression-based joint linkage/association test under an additive model of allelic effect, while accounting for non-independence among family members via a kinship variance component. RESULTS: Univariate genetic analysis indicated serum uric acid concentrations to be significant heritable (h (2) = 0.50 ± 0.05, p < 4 × 10(-35)), and linkage analysis of serum uric acid concentrations confirmed our previous finding of a novel locus on 3p26 (LOD = 4.9, p < 1 × 10(-5)) in the extended sample. Additionally, we observed strong association of serum uric acid concentrations with variants in following candidate genes in the 3p26 region; inositol 1,4,5-trisphosphate receptor, type 1 (ITPR1), contactin 4 (CNTN4), decapping mRNA 1A (DCP1A); transglutaminase 4 (TGM4) and rho guanine nucleotide exchange factor (GEF) 26 (ARHGEF26) [p < 3 × 10(-7); minor allele frequencies ranged between 0.003 and 0.42] and evidence of cis-regulation for ITPR1 transcripts. CONCLUSION: Our results confirm the importance of the chromosome 3p26 locus and genetic variants in this region in the regulation of serum uric acid concentrations.
Asunto(s)
Contactinas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Americanos Mexicanos/genética , Sitios de Carácter Cuantitativo , Ácido Úrico/sangre , Adulto , Cromosomas Humanos Par 3 , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO variants and PA on measures of adiposity in Latinos. RESULTS: After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat mass, HC, and WC with statistical significance (P < 0.001). Although significant associations between the three FTO genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed nominally significant associations. However, several of such interactive influences exhibited considerable trend towards association. CONCLUSIONS: These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA interventions.
Asunto(s)
Ejercicio Físico , Obesidad/genética , Proteínas/genética , Tejido Adiposo/metabolismo , Adiposidad/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Índice de Masa Corporal , Niño , Femenino , Predisposición Genética a la Enfermedad , Técnicas de Genotipaje , Hispánicos o Latinos/genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Encuestas y Cuestionarios , Circunferencia de la Cintura , Adulto JovenRESUMEN
OBJECTIVES: The two objectives of the current study were to: 1) investigate the genetic contributions to variations in serum vitamin D concentrations under two dietary conditions (a standard monkey biscuit diet vs. a diet designed to model typical American consumption); and 2) explore the interaction of vitamin D with pregnancy status using a cohort of pedigreed female vervet/African green monkeys. METHODS: This study includes 185 female (≥3.5 years) vervet/African green monkeys (Chlorocebus aethiops sabaeus) from a multi-generational, pedigreed breeding colony. The 25(OH)D3 concentrations were first measured seven to eight weeks after consuming a "typical American" diet (TAD), deriving 37, 18, and 45% of calories from fat, protein sources, and carbohydrates, and supplemented with vitamin D to a human equivalent of 1,000 IU/day. Vitamin D concentrations were assessed again when animals were switched to a low-fat, standard biscuit diet (LabDiet 5038) for 8 months, which provided a human equivalent of approximately 4,000 IU/day of vitamin D. All statistical analyses were implemented in SOLAR. RESULTS: Pregnancy was associated with reduced 25(OH)D3 concentrations. Heritability analyses indicated a significant genetic contribution to 25(OH)D3 concentrations in the same monkeys consuming the biscuit diet (h(2) =0.66, P=0.0004) and TAD (h(2) =0.67, P=0.0078) diets, with higher 25(OH)D3 concentrations in animals consuming the biscuit diet. Additionally, there was a significant genotype-by-pregnancy status interaction on 25(OH)D3 concentrations (P<0.05) only among animals consuming the TAD diet. DISCUSSION: These results support the existence of a genetic contribution to differences in serum 25(OH)D3 concentrations by pregnancy status and emphasize the role of diet (including vitamin D supplementation) in modifying genetic signals as well as vitamin D concentrations.
Asunto(s)
Chlorocebus aethiops/genética , Chlorocebus aethiops/fisiología , Embarazo/efectos de los fármacos , Vitamina D/genética , Vitamina D/farmacología , Alimentación Animal , Animales , Dieta , Suplementos Dietéticos , Femenino , Vitamina D/administración & dosificación , Vitamina D/sangreRESUMEN
OBJECTIVE: Genetically isolated and homogenous populations are ideal for detecting genes underlying common complex diseases. The use of isolated populations with reduced disease heterogeneity has led to significant gene discoveries in the past. The aim of this pilot study was to assess the prevalence of cardiovascular disease (CVD) risk phenotypes in a genetically homogenous population of Parsi Zoroastrians in the United States. METHODS: Anthropometrics, blood pressure, and medical history were collected from 152 men and 186 women participating in a pilot study as part of the Parsi Family Study. The relative pairs used in the study included 60 parent-off springs, 28 siblings, 6 grandparent-grandchild, 7 avuncular, 18 half-siblings, 7 half-avuncular, and one half-first cousin. Estimates of genetic and environmental influence were calculated using a maximum likelihood-based variance components method implemented in SOLAR. RESULTS: The prevalence of overweight/obesity in adults (62%) was on par with current US prevalence. Hypertension and prehypertension were prevalent in 16% and 46% of the participants, respectively. The quantitative genetic analysis revealed significant heritabilities for all anthropometric phenotypes (P < 0.05). Significant phenotypic correlations were found between blood pressure and anthropometric phenotypes (P < 0.001), whereas significant genetic correlation was found for only diastolic blood pressure and fat free mass (rhoG = -0.88, P < 0.05). CONCLUSION: These preliminary data show significant additive genetic effects on CVD-related phenotypes in this population. Our findings represent the first epidemiological data in Parsi Zoroastrians in the United States and offer excellent promise for future genetic studies in this population. Am. J. Hum. Biol. 28:440-443, 2016. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Asiático , Enfermedades Cardiovasculares/etnología , Hipertensión/etnología , Obesidad/etnología , Sobrepeso/etnología , Prehipertensión/etnología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antropometría , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Niño , Femenino , Humanos , Hipertensión/epidemiología , Hipertensión/genética , Funciones de Verosimilitud , Masculino , Persona de Mediana Edad , Obesidad/epidemiología , Obesidad/genética , Sobrepeso/epidemiología , Sobrepeso/genética , Fenotipo , Proyectos Piloto , Prehipertensión/epidemiología , Prehipertensión/etiología , Prevalencia , Factores de Riesgo , Estados Unidos/epidemiología , Adulto JovenRESUMEN
BACKGROUND/AIMS: The increased occurrence of type 2 diabetes and its clinical correlates is a global public health issue, and there are continued efforts to find its genetic determinant across ethnically diverse populations. The aims of this study were to determine the heritability of diabetes and metabolic syndrome phenotypes in the Arizona Insulin Resistance (AIR) registry and to perform an association analysis of common single nucleotide polymorphisms (SNPs) identified by GWAS with these traits. All study participants were Mexican Americans from the AIR registry. METHODS: Metabolic, anthropometric, demographic and medical history information was obtained on the 667 individuals enrolled in the registry. RESULTS: The heritability estimates were moderate to high in magnitude and significant, indicating that the AIR registry is well suited for the identification of genetic factors contributing to diabetes and the metabolic syndrome. From the 30 GWAS genes selected (some genes were represented by multiple SNPs), 20 SNPs exhibited associations with one or more of the diabetes related traits with nominal significance (p ≤ 0.05). In addition, 25 SNPs were nominally significantly associated with one or more of the metabolic phenotypes tested (p ≤ 0.05). Most notably, 5 SNPs from 5 genes [body mass index (BMI), hip circumference: rs3751812/FTO; fasting plasma glucose, hemoglobin A1c: rs4607517/GCK; very-low-density lipoprotein: rs10830963/MTNR1B; BMI: rs13266634/SLC30A8, and total cholesterol, low-density lipoprotein: rs7578597/THADA] were significantly associated with obesity, glycemic, and lipid phenotypes when using the multiple testing significance threshold of 0.0015. CONCLUSION: These findings extend previous work on Mexican Americans to suggest that metabolic disease is strongly influenced by genetic background in this high-risk population.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Síndrome Metabólico/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Arizona , Glucemia/metabolismo , Presión Sanguínea , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/etnología , Salud de la Familia , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética/estadística & datos numéricos , Predisposición Genética a la Enfermedad/etnología , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Genotipo , Humanos , Resistencia a la Insulina/genética , Desequilibrio de Ligamiento , Lípidos/sangre , Masculino , Síndrome Metabólico/etnología , Americanos Mexicanos/genética , Americanos Mexicanos/estadística & datos numéricos , Persona de Mediana Edad , Sistema de Registros/estadística & datos numéricos , Adulto JovenRESUMEN
OBJECTIVE: Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage (GWL) analysis to localize T2DM susceptibility loci in Mexican Americans. METHODS: We used the phenotypic and genotypic data from 1,122 Mexican-American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). GWL analysis was performed using the variance components approach. Data from 2 additional Mexican-American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence. RESULTS: After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, p = 2.7 × 10(-6)). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region also in SAFDGS, we found the significant and increased linkage evidence (LOD = 4.3, empirical p = 1.0 × 10(-5), genome-wide p = 1.6 × 10(-3)) for T2DM at the same chromosomal region, when we performed a GWL analysis of the VAGES data combined with the SAFHS and SAFDGS data. CONCLUSION: Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies involving T2DM-related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes.
Asunto(s)
Cromosomas Humanos Par 9 , Diabetes Mellitus Tipo 2/genética , Ligamiento Genético , Americanos Mexicanos/genética , Adulto , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Preeclampsia, a pregnancy complication characterized by hypertension after 20 gestational weeks, is a major cause of maternal and neonatal morbidity and mortality. Mechanisms leading to preeclampsia are unclear; however, there is evidence of high heritability. We evaluated the association of polygenic scores (PGS) for blood pressure traits and preeclampsia to assess whether there is shared genetic architecture. Non-Hispanic Black and White reproductive age females with pregnancy indications and genotypes were obtained from Vanderbilt University's BioVU, Electronic Medical Records and Genomics network, and Penn Medicine Biobank. Preeclampsia was defined by ICD codes. Summary statistics for diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) PGS were acquired from Giri et al. Associations between preeclampsia and each PGS were evaluated separately by race and data source before subsequent meta-analysis. Ten-fold cross validation was used for prediction modeling. In 3504 Black and 5009 White included individuals, the rate of preeclampsia was 15.49%. In cross-ancestry meta-analysis, all PGSs were associated with preeclampsia (ORDBP = 1.10, 95% CI 1.02-1.17, p = 7.68 × 10-3; ORSBP = 1.16, 95% CI 1.09-1.23, p = 2.23 × 10-6; ORPP = 1.14, 95% CI 1.07-1.27, p = 9.86 × 10-5). Addition of PGSs to clinical prediction models did not improve predictive performance. Genetic factors contributing to blood pressure regulation in the general population also predispose to preeclampsia.
Asunto(s)
Presión Sanguínea , Preeclampsia , Humanos , Preeclampsia/genética , Femenino , Embarazo , Presión Sanguínea/genética , Adulto , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Población Blanca/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms (SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). We identified transcripts that met Bonferroni-corrected significance for each omic, were more significant in the correlated meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver and observed significant (PMETA<0.05 & PMETA
RESUMEN
Pediatric metabolic syndrome (MS) and its cardiometabolic components (MSCs) have become increasingly prevalent, yet little is known about the genetics underlying MS risk in children. We examined the prevalence and genetics of MS-related traits among 670 non-diabetic Mexican American (MA) children and adolescents, aged 6-17 years (49 % female), who were participants in the San Antonio Family Assessment of Metabolic Risk Indicators in Youth study. These children are offspring or biological relatives of adult participants from three well-established Mexican American family studies in San Antonio, TX, at increased risk of type 2 diabetes. MS was defined as ≥3 abnormalities among 6 MSC measures: waist circumference, systolic and/or diastolic blood pressure, fasting insulin, triglycerides, HDL-cholesterol, and fasting and/or 2-h OGTT glucose. Genetic analyses of MS, number of MSCs (MSC-N), MS factors, and bivariate MS traits were performed. Overweight/obesity (53 %), pre-diabetes (13 %), acanthosis nigricans (33 %), and MS (19 %) were strikingly prevalent, as were MS components, including abdominal adiposity (32 %) and low HDL-cholesterol (32 %). Factor analysis of MS traits yielded three constructs: adipo-insulin-lipid, blood pressure, and glucose factors, and their factor scores were highly heritable. MS itself exhibited 68 % heritability. MSC-N showed strong positive genetic correlations with obesity, insulin resistance, inflammation, and acanthosis nigricans, and negative genetic correlation with physical fitness. MS trait pairs exhibited strong genetic and/or environmental correlations. These findings highlight the complex genetic architecture of MS/MSCs in MA children, and underscore the need for early screening and intervention to prevent chronic sequelae in this vulnerable pediatric population.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Americanos Mexicanos/genética , Grasa Abdominal/patología , Acantosis Nigricans/patología , Adolescente , Glucemia , Presión Sanguínea , Niño , HDL-Colesterol/sangre , Análisis por Conglomerados , Análisis Factorial , Femenino , Humanos , Masculino , Síndrome Metabólico/patología , Epidemiología Molecular , Sobrepeso/patología , Factores de Riesgo , Texas/epidemiologíaRESUMEN
Background: Preeclampsia, a pregnancy complication characterized by hypertension after 20 gestational weeks, is a major cause of maternal and neonatal morbidity and mortality. The mechanisms leading to preeclampsia are unclear; however, there is evidence that preeclampsia is highly heritable. We evaluated the association of polygenic risk scores (PRS) for blood pressure traits and preeclampsia to assess whether there is shared genetic architecture. Methods: Participants were obtained from Vanderbilt University's BioVU, the Electronic Medical Records and Genomics network, and the Penn Medicine Biobank. Non-Hispanic Black and White females of reproductive age with indications of pregnancy and genotype information were included. Preeclampsia was defined by ICD codes. Summary statistics for diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) PRS were obtained from Giri et al 2019. Associations between preeclampsia and each PRS were evaluated separately by race and study population before evidence was meta-analyzed. Prediction models were developed and evaluated using 10-fold cross validation. Results: In the 3,504 Black and 5,009 White individuals included, the rate of preeclampsia was 15.49%. The DBP and SBP PRSs were associated with preeclampsia in Whites but not Blacks. The PP PRS was significantly associated with preeclampsia in Blacks and Whites. In trans-ancestry meta-analysis, all PRSs were associated with preeclampsia (OR DBP =1.10, 95% CI=1.02-1.17, p =7.68×10 -3 ; OR SBP =1.16, 95% CI=1.09-1.23, p =2.23×10 -6 ; OR PP =1.14, 95% CI=1.07-1.27, p =9.86×10 -5 ). However, addition of PRSs to clinical prediction models did not improve predictive performance. Conclusions: Genetic factors contributing to blood pressure regulation in the general population also predispose to preeclampsia.
RESUMEN
Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.
RESUMEN
Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.