Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928416

RESUMEN

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Asunto(s)
Catepsina D , Neuronas Dopaminérgicas , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40 , alfa-Sinucleína , Catepsina D/metabolismo , Catepsina D/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Regulación hacia Arriba , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Mitocondrias/metabolismo , Lisosomas/metabolismo , Regulación hacia Abajo , Apoptosis/genética , Línea Celular Tumoral
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835494

RESUMEN

Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1ß, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.


Asunto(s)
Enfermedad de Alzheimer , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Enfermedades Neuroinflamatorias , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Inflamasomas/metabolismo , Interleucina-6/metabolismo , Microglía/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Enfermedades Neuroinflamatorias/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Variación Genética
3.
Mol Neurobiol ; 60(5): 2706-2728, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36715921

RESUMEN

Deletion and missense or nonsense mutation of RAB39B gene cause familial Parkinson's disease (PD). We hypothesized that deletion and mutation of RAB39B gene induce degeneration of dopaminergic neurons by decreasing protein level of functional RAB39B and causing RAB39B deficiency. Cellular model of deletion or mutation of RAB39B gene-induced PD was prepared by knocking down endogenous RAB39B in human SH-SY5Y dopaminergic cells. Transfection of shRNA-induced 90% reduction in RAB39B level significantly decreased viability of SH-SY5Y dopaminergic neurons. Deficiency of RAB39B caused impairment of macroautophagy/autophagy, which led to increased protein levels of α-synuclein and phospho-α-synucleinSer129 within endoplasmic reticulum (ER) and mitochondria. RAB39B deficiency-induced increase of ER α-synuclein and phospho-α-synucleinSer129 caused activation of ER stress, unfolded protein response, and ER stress-induced pro-apoptotic cascade. Deficiency of RAB39B-induced increase of mitochondrial α-synuclein decreased mitochondrial membrane potential and increased mitochondrial superoxide. RAB39B deficiency-induced activation of ER stress pro-apoptotic pathway, mitochondrial dysfunction, and oxidative stress caused apoptotic death of SH-SY5Y dopaminergic cells by activating mitochondrial apoptotic cascade. In contrast to neuroprotective effect of wild-type RAB39B, PD mutant (T168K), (W186X), or (G192R) RAB39B did not prevent tunicamycin- or rotenone-induced increase of neurotoxic α-synuclein and activation of pro-apoptotic pathway. Our results suggest that RAB39B is required for survival and macroautophagy function of dopaminergic neurons and that deletion or PD mutation of RAB39B gene-induced RAB39B deficiency induces apoptotic death of dopaminergic neurons via impairing autophagy function and upregulating α-synuclein.


Asunto(s)
Estrés del Retículo Endoplásmico , Neuroblastoma , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Autofagia , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Estrés Oxidativo , Proteínas de Unión al GTP rab/metabolismo
4.
Biochem Pharmacol ; 212: 115524, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37001680

RESUMEN

Microglial activation-induced neuroinflammation contributes to onset and progression of sporadic and hereditary Parkinson's disease (PD). Activated microglia secrete pro-inflammatory and neurotoxic IL-1ß, IL-6 and TNF-α, which subsequently promote neurodegeneration. Formyl peptide receptor-1 (FPR1) of CNS microglia functions as pattern recognition receptor and is activated by N-formylated peptides, leading to microglial activation, induction of inflammatory responses and resulting neurotoxicity. In this study, it was hypothesized that FPR1 activation of microglia causes loss of dopaminergic neurons by activating inflammasome and upregulating IL-1ß, IL-6 or TNF-α and that FPR1 antagonist HCH6-1 exerts neuroprotective effect on dopaminergic neurons. FPR1 agonist fMLF induced activation of microglia cells by causing activation of NLRP3 inflammasome and upregulation and secretion of IL-1ß, IL-6 or TNF-α. Conditioned medium (CM) of fMLF-treated microglia cells, which contains neurotoxic IL-1ß, IL-6 and TNF-α, caused apoptotic death of differentiated SH-SY5Y dopaminergic neurons by inducing mitochondrial oxidative stress and activating pro-apoptotic signaling. FPR1 antagonist HCH6-1 prevented fMLF-induced activation of inflammasome and upregulation of pro-inflammatory cytokines in microglia cells. HCH6-1 co-treatment reversed CM of fMLF-treated microglia-induced apoptotic death of dopaminergic neurons. FPR1 antagonist HCH6-1 inhibited rotenone-induced upregulation of microglial marker Iba-1 protein level, cell death of dopaminergic neurons and motor impairment in zebrafish. HCH6-1 ameliorated rotenone-induced microglial activation, upregulation of FPR1 mRNA, activation of NLRP3 inflammasome, cell death of SN dopaminergic neurons and PD motor deficit in mice. Our results suggest that FPR1 antagonist HCH6-1 possesses anti-neuroinflammatory and neuroprotective effects on dopaminergic neurons by inhibiting microglial activation and upregulation of inflammasome activity and pro-inflammatory cytokines.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Interleucina-6/metabolismo , Rotenona/toxicidad , Rotenona/metabolismo , Pez Cebra , Modelos Animales de Enfermedad , Neuroblastoma/metabolismo , Neuronas Dopaminérgicas , Microglía , Citocinas/metabolismo
5.
Biomaterials ; 291: 121864, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343608

RESUMEN

Exosome-based regenerative therapies are potentially easier to manufacture and safer to apply compared to cell-based therapies. However, many questions remain about how to bio-manufacture reproducible and potent exosomes using animal-free reagents. Here we evaluate the hypothesis that designer biomaterial substrates can be used to alter the potency of exosomes secreted by human induced pluripotent stem cells (iPSCs). Two animal-free designer matrices were fabricated based on recombinant elastin-like polypeptides (ELPs): one including a cell-adhesive RGD ligand and a second with a non-adhesive RDG peptide. While iPSCs cultured on these two substrates and Matrigel-coated controls had similar levels of proliferation, the RDG-ELP substrate significantly increased protein expression of stemness markers OCT4 and SOX2 and suppressed spontaneous differentiation compared to those on RGD-ELP. The pro-survival potency of iPSC-derived exosomes was evaluated using three distinct stress tests: serum starvation in murine fibroblasts, hypoxia in human endothelial cells, and hyperosmolarity in canine kidney cells. In all three cases, exosomes produced by iPSCs grown on RDG-ELP substrates had similar pro-survival effects to those produced using iPSCs grown on Matrigel, while use of RGD-ELP substrates led to significantly reduced exosome potency. These data demonstrate that recombinant substrates can be designed for the robust bio-manufacturing of iPSC-derived, pro-survival exosomes.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Perros , Ratones , Elastina/metabolismo , Exosomas/metabolismo , Células Endoteliales , Péptidos/farmacología , Péptidos/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo
6.
Antioxidants (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34829694

RESUMEN

Oxidative stress plays a key role in the degeneration of dopaminergic neurons in Parkinson's disease (PD), which may be aggravated by concomitant PD-associated gut dysbiosis. Probiotics and prebiotics are therapeutically relevant to these conditions due to their antioxidant, anti-inflammatory, and gut microbiome modulation properties. However, the mechanisms by which probiotic/prebiotic supplementation affects antioxidant capacity and the gut microbiome in PD remains poorly characterized. In this study, we assessed the effects of a Lactobacillus salivarius AP-32 probiotic, a prebiotic (dried AP-32 culture medium supernatant), and a probiotic/prebiotic cocktail in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced PD. The neuroprotective effects and levels of oxidative stress were evaluated after eight weeks of daily supplementation. Fecal microbiota composition was analyzed by fecal 16S rRNA gene sequencing. The supplements were associated with direct increases in host antioxidant enzyme activities and short-chain fatty acid production, protected dopaminergic neurons, and improved motor functions. The supplements also altered the fecal microbiota composition, and some specifically enriched commensal taxa correlated positively with superoxide dismutase, glutathione peroxidase, and catalase activity, indicating supplementation also promotes antioxidant activity via an indirect pathway. Therefore, L. salivarius AP-32 supplementation enhanced the activity of host antioxidant enzymes via direct and indirect modes of action in rats with 6-OHDA-induced PD.

7.
Neurobiol Aging ; 107: 189-196, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34275689

RESUMEN

Our previous study suggests that upregulated RAB35 is implicated in etiology of Parkinson's disease (PD). We hypothesized that upregulated RAB35 results from single nucleotide polymorphisms (SNPs) in RAB35 gene promoter. We identified SNPs within RAB35 gene promoter by analyzing DNA samples of discovery cohort and validation cohort. SNP rs17525453 within RAB35 gene promoter (T>C at position of -66) was significantly associated with idiopathic PD patients. Compared to normal controls, sporadic PD patients had higher C allele frequency. CC and CT genotype significantly increased risk of PD compared with TT genotype. SNP rs17525453 within RAB35 gene promoter leads to formation of transcription factor TFII-I binding site. Results of EMSA and supershift assay indicated that TFII-I binds to rs17525453 sequence of RAB35 gene promoter. Luciferase reporter assays showed that rs17525453 variant of RAB35 gene promoter possesses an augmented transcriptional activity. Our results suggest that functional variant rs17525453 within RAB35 gene promoter is likely to enhance transcriptional activity and upregulate RAB35 protein, which could lead to increased risk of PD in Taiwanese population.


Asunto(s)
Estudios de Asociación Genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Proteínas de Unión al GTP rab/genética , Pueblo Asiatico/genética , Estudios de Cohortes , Frecuencia de los Genes , Genética de Población , Genotipo , Humanos , Enfermedad de Parkinson/epidemiología , Riesgo , Taiwán/epidemiología , Transcripción Genética/genética , Regulación hacia Arriba/genética , Proteínas de Unión al GTP rab/metabolismo
8.
Exp Neurol ; 346: 113863, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34520727

RESUMEN

Parkinson's disease (PD), the most common neurodegenerative motor disorder, is currently incurable. Although many studies have provided insights on the substantial influence of genetic factors on the occurrence and development of PD, the molecular mechanism underlying the disease is largely unclear. Previous studies have shown that point mutations in the phospholipase A2 group VI gene (PLA2G6) correlate with young-onset dystonia-parkinsonism type 14 (PARK14). However, limited information is available regarding the pathogenic role of this gene and the mechanism underlying its function. To study the role of PLA2G6 mutations, we first used zebrafish larvae to screen six PLA2G6 mutations and revealed that injection of D331Y, T572I, and R741Q mutation constructs induced phenotypes such as motility defects and reduction in dopaminergic neurons. The motility defects could be alleviated by treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), indicating that these mutations are pathological for PARK14 symptoms. Furthermore, the injection of D331Y and T572I mutation constructs reduced phospholipase activity of PLA2G6 and its lipid metabolites, which confirmed that these two mutations are loss-of-function mutations. Metabolomic analysis revealed that D331Y or T572I mutation led to higher phospholipid and lower docosahexaenoic acid (DHA) levels, indicating that reduced DHA levels are pathological for defective motor functions. Further, a dietary DHA supplement relieved the motility defects in PLA2G6D331Y/D331Y knock-in mice. This result revealed that the D331Y mutation caused defective PLA2G6 phospholipase activity and consequently reduced the DHA level, which is the pathogenic factor responsible for PARK14. The results of this study will facilitate the development of therapeutic strategies for PARK14.


Asunto(s)
Ácidos Docosahexaenoicos/uso terapéutico , Fosfolipasas A2 Grupo VI/genética , Mutación/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Fenotipo , Animales , Ácidos Docosahexaenoicos/farmacología , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Resultado del Tratamiento , Pez Cebra
9.
Biochem Pharmacol ; 175: 113919, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32194057

RESUMEN

Achilles tendinopathy has a high re-injury rate and poor prognosis. Development of effective therapy for Achilles tendinopathy is important. Excessive accumulation of ROS and resulting oxidative stress are believed to cause tendinopathy. Overproduction of hydrogen peroxide (H2O2), the most common ROS, could lead to the tendinopathy by causing oxidative damage, activation of endoplasmic reticulum (ER) stress and apoptotic death of tenocytes. Activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) is expected to alleviate oxidative stress and ER stress. Alda-1 is a selective and potent activator of ALDH2. In this study, we examined the cytoprotective benefit of Alda-1, an activator of ALDH2, on H2O2-induced Achilles tendinopathy in cellular and mouse models. We prepared cellular and mouse models of Achilles tendinopathy by treating cultured Achilles tenocytes and Achilles tendons with oxidative stressor H2O2. Subsequently, we studied the protective benefit of Alda-1 on H2O2-induced Achilles tendinopathy. Alda-1 pretreatment attenuated H2O2-induced cell death of cultured Achilles tenocytes. Treatment of Alda-1 prevented H2O2-induced oxidative stress and depolarization of mitochondrial membrane potential in tenocytes. Application of Alda-1 attenuated H2O2-triggered mitochondria- and ER stress-mediated apoptotic cascades in cultured tenocytes. Alda-1 treatment ameliorated the severity of H2O2-induced Achilles tendinopathy in vivo by preventing H2O2-induced pathological histological features of Achilles tendons, apoptotic death of Achilles tenocytes and upregulated expression of inflammatory cytokines IL-1ß and TNF-α. Our results provide the evidence that ALDH2 activator Alda-1 ameliorates H2O2-induced Achilles tendinopathy. Alda-1 could be used for preventing and treating Achilles tendinopathy.


Asunto(s)
Tendón Calcáneo/metabolismo , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Benzamidas/uso terapéutico , Benzodioxoles/uso terapéutico , Modelos Animales de Enfermedad , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/patología , Animales , Benzamidas/farmacología , Benzodioxoles/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/toxicidad , Ratones , Ratones Endogámicos C57BL , Tendinopatía/patología , Tenocitos/efectos de los fármacos , Tenocitos/metabolismo , Tenocitos/patología
10.
Cell Death Dis ; 11(11): 1018, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257649

RESUMEN

Patients with familial type 17 of Parkinson's disease (PARK17) manifest autosomal dominant pattern and late-onset parkinsonian syndromes. Heterozygous (D620N) mutation of vacuolar protein sorting 35 (VPS35) is genetic cause of PARK17. We prepared heterozygous VPS35D620N/+ knockin mouse, which is an ideal animal model of (D620N) VPS35-induced autosomal dominant PARK17. Late-onset loss of substantia nigra pars compacta (SNpc) dopaminergic (DAergic) neurons and motor deficits of Parkinson's disease were found in 16-month-old VPS35D620N/+ mice. Normal function of VPS35-containing retromer is needed for activity of Wnt/ß-catenin cascade, which participates in protection and survival of SNpc DAergic neurons. It was hypothesized that (D620N) VPS35 mutation causes the malfunction of VPS35 and resulting impaired activity of Wnt/ß-catenin pathway. Protein levels of Wnt1 and nuclear ß-catenin were reduced in SN of 16-month-old VPS35D620N/+ knockin mice. Downregulated protein expression of survivin, which is a target gene of nuclear ß-catenin, and upregulated protein levels of active caspase-8 and active caspase-9 were observed in SN of VPS35D620N/+ mice at age of 16 months. VPS35 is involved in controlling morphology and function of mitochondria. Impaired function of VPS35 caused by (D620N) mutation could lead to abnormal morphology and malfunction of mitochondria. A significant decrease in mitochondrial size and resulting mitochondrial fragmentation was found in tyrosine hydroxylase-positive and neuromelanin-positive SNpc DAergic neurons of 16-month-old VPS35D620N/+ mice. Mitochondrial complex I activity or complex IV activity was reduced in SN of 16-month-old VPS35D620N/+ mice. Increased level of mitochondrial ROS and oxidative stress were found in SN of 16-month-old VPS35D620N/+ mice. Levels of cytosolic cytochrome c and active caspase-3 were increased in SN of VPS35D620N/+ mice aged 16 months. Our results suggest that PARK17 mutant (D620N) VPS35 impairs activity of Wnt/ß-catenin signaling pathway and causes abnormal morphology and dysfunction of mitochondria, which could lead to neurodegeneration of SNpc DAergic cells.


Asunto(s)
Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Proteínas de Transporte Vesicular/metabolismo , Vía de Señalización Wnt/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Persona de Mediana Edad
11.
Mol Cancer Ther ; 7(9): 2788-97, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18790759

RESUMEN

Glucose-regulated protein 78 (Grp78) is an endoplasmic reticulum chaperone protein and is overexpressed in various cancers. However, it is unclear how significance of this molecule play an active role contributing to the oncogenic effect of head and neck cancer (HNC). To investigate the potential function of Grp78, six HNC cell lines were used. We found that Grp78 is highly expressed in all six cell lines and many of the proteins were localized in the periphery regions, implying other function of this molecule aside from endoplasmic reticulum stress response. Knockdown of Grp78 by small interfering RNA significantly reduced cell growth and colony formation to 53% to 12% compared with that of controls in all six HNC cell lines. Using in vitro wound healing and Matrigel invasion assays, we found that cell migration and invasive ability were also inhibited to 23% to 2% in all these cell lines tested. In vivo xenograft studies showed that administration of Grp78-small interfering RNA plasmid into HNC xenografts significantly inhibited both tumor growth in situ (>60% inhibition at day 34) and liver metastasis (>90% inhibition at day 20). Our study showed that Grp78 actively regulates multiple malignant phenotypes, including cell growth, migration, and invasion. Because knockdown Grp78 expression succeeds in the reduction of tumor growth and metastatic potential, this molecule may serve as a molecular target of therapeutic intervention for HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/terapia , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adulto , Animales , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Invasividad Neoplásica , Metástasis de la Neoplasia , Fenotipo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Stem Cell Res ; 40: 101552, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493761

RESUMEN

Mutations in PLA2G6 gene cause PLA2G6-associated neurodegeneration, including recessive familial type 14 of Parkinson's disease (PARK14). Previously, we identified PARK14 patients with compound heterozygous c.991G > T/c.1077G > A (p.D331Y/p.M358IfsX) mutations. The c.1077G > A mutation led to a four base-pairs deletion and frameshift mutation (p.M358IfsX) of PLA2G6 mRNA. We established induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells of a female patient with compound heterozygous c.991G > T/c.1077G > A (p.D331Y/ p.M358IfsX) mutations by using Sendai-virus delivery system. The iPSCs exhibited pluripotency and in vivo differentiation potential. The iPSCs can be used for studying the molecular pathogenic mechanism of PARK14.


Asunto(s)
Línea Celular/metabolismo , Fosfolipasas A2 Grupo VI/genética , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/genética , Adulto , Diferenciación Celular , Línea Celular/citología , Proliferación Celular , Femenino , Mutación del Sistema de Lectura , Fosfolipasas A2 Grupo VI/metabolismo , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Mutación Puntual
13.
J Clin Neurol ; 15(4): 488-495, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31591837

RESUMEN

BACKGROUND AND PURPOSE: It is essential to develop a reliable predictive serum biomarker for Parkinson's disease (PD). The accumulation of alpha-synuclein (αSyn) and up-regulated expression of Rab35 participate in the etiology of PD. The purpose of this investigation was to determine whether the combined assessment of serum αSyn and Rab35 is a useful predictive biomarker for PD. METHODS: Serum levels of αSyn or Rab35 were determined in serum samples from 59 sporadic PD patients, 19 progressive supranuclear palsy (PSP) patients, 20 multiple system atrophy (MSA) patients, and 60 normal controls (NC). Receiver operating characteristics (ROC) curves were calculated to determine the diagnostic accuracy of αSyn or/and Rab35 in discriminating PD patients from NC or atypical parkinsonian patients. RESULTS: The levels of αSyn and Rab35 were increased in PD patients. The serum level of Rab35 was positively correlated with that of αSyn in PD patients. Compared to analyzing αSyn or Rab35 alone, the combined analysis of αSyn and Rab35 produced a larger area under the ROC curve and performed better in discriminating PD patients from NC, MSA patients, or PSP patients. When age was dichotomized at 55, 60, 65, or 70 years, the combined assessment of αSyn and Rab35 for classifying PD was better in the group below the cutoff age than in the group above the cutoff age. CONCLUSIONS: Combined assessment of serum αSyn and Rab35 is a better biomarker for discriminating PD patients from NC or atypical parkinsonian patients, and is a useful predictive biomarker for younger sporadic PD patients.

14.
Front Cell Neurosci ; 13: 399, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572127

RESUMEN

MicroRNAs (miRs) downregulate or upregulate the mRNA level by binding to the 3'-untranslated region (3'UTR) of target gene. Dysregulated miR levels can be used as biomarkers of Parkinson's disease (PD) and could participate in the etiology of PD. In the present study, 45 brain-enriched miRs were evaluated in serum samples from 50 normal subjects and 50 sporadic PD patients. The level of miR-204-5p was upregulated in serum samples from PD patients. An upregulated level of miR-204-5p was also observed in the serum and substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Expression of miR-204-5p increased the level of α-synuclein (α-Syn), phosphorylated (phospho)-α-Syn, tau, or phospho-tau protein and resulted in the activation of endoplasmic reticulum (ER) stress in SH-SY5Y dopaminergic cells. Expression of miR-204-5p caused autophagy impairment and activation of c-Jun N-terminal kinase (JNK)-mediated apoptotic cascade in SH-SY5Y dopaminergic cells. Our study using the bioinformatic method and dual-luciferase reporter analysis suggests that miR-204-5p positively regulates mRNA expression of dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) by directly interacting with 3'UTR of DYRK1A. The mRNA and protein levels of DYRK1A were increased in SH-SY5Y dopaminergic cells expressing miR-204-5p and SN of MPTP-induced PD mouse model. Knockdown of DYRK1A expression or treatment of the DYRK1A inhibitor harmine attenuated miR-204-5p-induced increase in protein expression of phospho-α-Syn or phospho-tau, ER stress, autophagy impairment, and activation of JNK-mediated apoptotic pathway in SH-SY5Y dopaminergic cells or primary cultured dopaminergic neurons. Our results suggest that upregulated expression of miR-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated ER stress and apoptotic signaling cascade.

15.
Mol Neurobiol ; 56(6): 3835-3853, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30088174

RESUMEN

PARK14 patients with homozygous (D331Y) PLA2G6 mutation display motor deficits of pure early-onset Parkinson's disease (PD). The aim of this study is to investigate the pathogenic mechanism of mutant (D331Y) PLA2G6-induced PD. We generated knockin (KI) mouse model of PARK14 harboring homozygous (D331Y) PLA2G6 mutation. Then, we investigated neuropathological and neurological phenotypes of PLA2G6D331Y/D331Y KI mice and molecular pathogenic mechanisms of (D331Y) PLA2G6-induced degeneration of substantia nigra (SN) dopaminergic neurons. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice displayed early-onset cell death of SNpc dopaminergic neurons. Lewy body pathology was found in the SN of PLA2G6D331Y/D331Y mice. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice exhibited early-onset parkinsonism phenotypes. Disrupted cristae of mitochondria were found in SNpc dopaminergic neurons of PLA2G6D331Y/D331Y mice. PLA2G6D331Y/D331Y mice displayed mitochondrial dysfunction and upregulated ROS production, which may lead to activation of apoptotic cascade. Upregulated protein levels of Grp78, IRE1, PERK, and CHOP, which are involved in activation of ER stress, were found in the SN of PLA2G6D331Y/D331Y mice. Protein expression of mitophagic proteins, including parkin and BNIP3, was downregulated in the SN of PLA2G6D331Y/D331Y mice, suggesting that (D331Y) PLA2G6 mutation causes mitophagy dysfunction. In the SN of PLA2G6D331Y/D331Y mice, mRNA levels of eight genes that are involved in neuroprotection/neurogenesis were decreased, while mRNA levels of two genes that promote apoptotic death were increased. Our results suggest that PARK14 (D331Y) PLA2G6 mutation causes degeneration of SNpc dopaminergic neurons by causing mitochondrial dysfunction, elevated ER stress, mitophagy impairment, and transcriptional abnormality.


Asunto(s)
Neuronas Dopaminérgicas/patología , Estrés del Retículo Endoplásmico , Técnicas de Sustitución del Gen , Fosfolipasas A2 Grupo VI/genética , Mitofagia , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Sustancia Negra/patología , Animales , Apoptosis , Secuencia de Bases , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica , Homocigoto , Humanos , Cuerpos de Lewy/patología , Ratones Endogámicos C57BL , Mitocondrias/patología , Mitocondrias/ultraestructura , Mutación/genética , Neuroprotección , Enfermedad de Parkinson/patología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Cancer Sci ; 99(8): 1507-14, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18754860

RESUMEN

Head and neck cancer (HNC) is one of the 10 most frequent cancers worldwide, with an estimated over 500,000 new cases being diagnosed annually. The overall 5-year survival rate in patients with HNC is one of the lowest among common malignant neoplasms and has not significantly changed during the last two decades. Oral cavity squamous cell carcinoma (OSCC) shares part of HNC and has been reported to be increasing in the betel quid chewing area in recent years. During 2006, OSCC has become the sixth most common type of cancer in Taiwan, and it is also the fourth most common type of cancer among men. It follows that this type of cancer wreaks a high social and personal cost. Environmental carcinogens such as betel quid chewing, tobacco smoking and alcohol drinking have been identified as major risk factors for head and neck cancer. There is growing interest in understanding the relationship between genetic susceptibility and the prevalent environmental carcinogens for HNC prevention. Within this review, we discuss the molecular and cellular aspects of HNC carcinogenesis in Taiwan, an endemic betel quid chewing area. Knowledge of molecular carcinogenesis of HNC may provide critical clues for diagnosis, prognosis, individualization of therapy and molecular therapeutics.


Asunto(s)
Areca/efectos adversos , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/etiología , Infecciones por Papillomavirus/complicaciones , Lesiones Precancerosas/genética , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/etiología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Mutación , Polimorfismo Genético , Lesiones Precancerosas/etiología , Lesiones Precancerosas/metabolismo , Factores de Riesgo , Fumar/efectos adversos , Análisis de Supervivencia , Taiwán/epidemiología
17.
Exp Neurol ; 304: 114-124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29522758

RESUMEN

Hexanucleotide repeat expansions in the C9orf72 gene are a common genetic cause of familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the function of C9orf72 in neural development and the pathogenic mechanism underlying neurodegeneration are unknown. We found that disrupting C9orf72 expression by using C9orf72 constructs that lack the complete DENN domain result in reduced GTPase activity in zebrafish embryos, demonstrating the indispensability of the complete DENN domain. This effect was phenocopied by knocking down endogenous C9orf72 expression by using morpholinos. C9orf72-deficient zebrafish embryos exhibited impaired axonogenesis and motility defects. The C9orf72 deficiency upregulated the expression of tp53 and caused neuronal apoptosis. Knockdown Tp53 in the C9orf72-deficient embryos rescued only the apoptotic phenotype but not the phenotype with axonal and motility defects. The C9orf72 deficiency also induced ccng1 (encodes Cyclin G1) mRNA expression, and injection of a dominant-negative Cyclin G1 construct rescued the axonal impairment, apoptosis, and motility defects in the C9orf72-deficient embryos. Our results revealed the GTPase activity of C9orf72 and demonstrated that Cyclin G1 is an essential downstream mediator for C9orf72 in neural development and motility. Furthermore, downregulating Cyclin G1 was sufficient to rescue all the defects caused by C9orf72 deficiency. In summary, we revealed a novel regulatory mechanism underlying the role of C9orf72 in neurological and motility defects. This result facilitates understanding the function of the C9orf72 gene in the developing nervous system and provides a potential mechanism underlying the pathogenesis of ALS-FTD.


Asunto(s)
Proteína C9orf72/metabolismo , Ciclina G1/metabolismo , Actividad Motora/fisiología , Neurogénesis/fisiología , Animales , Apoptosis/fisiología , Pez Cebra
18.
19.
Oncotarget ; 8(38): 63110-63120, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28968975

RESUMEN

Glioblastomas are among the most fatal brain tumors; however, the molecular determinants of their tumorigenic behavior are not adequately defined. In this study, we analyzed the role of KMT2A in the glioblastoma cell line U-87 MG. KMT2A knockdown promoted cell proliferation. Moreover, it increased the DNA methylation of NOTCH1 and NOTCH3 and reduced the expression of NOTCH1 and NOTCH3. NOTCH1 or NOTCH3 activation inhibited U-87 MG cell proliferation, whereas NOTCH1 and NOTCH3 inhibition by shRNAs induced cell proliferation, thus demonstrating the tumor-suppressive ability of NOTCH1 and NOTCH3 in U-87 MG cells. The induced cell proliferation caused by KMT2A knockdown could be nullified by using either constitutively active NOTCH1 or constitutively active NOTCH3. This result demonstrates that KMT2A positively regulates NOTCH1 and NOTCH3 and that this mechanism is essential for inhibiting the U-87 MG cell proliferation. The role of KMT2A knockdown in promoting tumor growth was further confirmed in vivo by transplanting U-87 MG cells into the brains of zebrafish larvae. In conclusion, we identified KMT2A-NOTCH as a negative regulatory cascade for glioblastoma cell proliferation, and this result provides important information for KMT2A- or NOTCH-targeted therapeutic strategies for brain tumors.

20.
Oncotarget ; 8(45): 79046-79060, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-29108286

RESUMEN

Mutations in the gene encoding Ca2+-independent phospholipase A2 group 6 (PLA2G6) cause the recessive familial type 14 of Parkinson's disease (PARK14). Mitochondrial dysfunction is involved in the pathogenesis of Parkinson's disease (PD). PLA2G6 is believed to be required for maintaining mitochondrial function. In the present study, rotenone-induced cellular model of PD was used to investigate possible molecular pathogenic mechanism of PARK14 mutant PLA2G6-induced PD. Overexpression of wild-type (WT) PLA2G6 ameliorated rotenone-induced apoptotic death of SH-SY5Y dopaminergic cells. PARK14 mutant (D331Y), (G517C), (T572I), (R632W), (N659S) or (R741Q) PLA2G6 failed to prevent rotenone-induced activation of mitochondrial apoptotic pathway and exert a neuroprotective effect. WT PLA2G6, but not PARK14 mutant PLA2G6, prevented rotenone-induced mitophagy impairment. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 was ineffective in attenuating rotenone-induced decrease in mitochondrial membrane potential and increase in the level of mitochondrial superoxide. WT PLA2G6, but not PARK14 PLA2G6 mutants, restored enzyme activity of mitochondrial complex I and cellular ATP content in rotenone-treated SH-SY5Y dopaminergic cells. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 failed to prevent rotenone-induced mitochondrial lipid peroxidation and cytochrome c release. These results suggest that PARK14 PLA2G6 mutants lose their ability to maintain mitochondrial function and are defective inpreventing mitochondrial dysfunction, ROS production and activation of mitochondrial apoptotic pathway in rotenone-induced cellular model of PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA