Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 36(28): 8144-8151, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32610913

RESUMEN

A new synthetic route was developed to modify cellulose nanofiber for water-repellent coatings with great sustainability after multiple washing cycles. Multiple functional groups were grafted on 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO)-oxidized cellulose nanofibers (TOCN) to achieve superhydrophobic performance and strong adhesion on cotton cloth. First, hexadecylamine (HDA) was used to modify TOCN surface into hydrophobic derivatives via amidation. The amidation-modified TOCN (AMT) were then grafted with a polyisocyanate cross-linking agent (PCA). The final multimodified TOCN (MMT) had hydrophobic alkyls and isocyanate groups on the surface. These surface functional groups were confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). After spraying the MMT suspension on cotton fabrics, the isocyanate groups would react with hydroxyl groups on cotton fibers, leading to a uniform conformal layer of MMT on fabric surfaces. The MMT coating showed great water repellence and washing sustainability. A large contact angle of 150° and a small sliding angle of ∼10° were observed. The superhydrophobic performance retained even after 10 laundry washing cycles. Several examples were also demonstrated to show the capability and the possibility of applying this coating material for water-repellent applications.

2.
Langmuir ; 35(9): 3256-3264, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30607954

RESUMEN

In this study, a highly responsive humidity sensor is developed by printing gold nanoparticles (GNPs) grafted with a hygroscopic polymer. These GNPs are inkjet-printed to form a uniform thin film over an interdigitated electrode with a controllable thickness by adjusting the printing parameters. The resistance of the printed GNP thin film decreases significantly upon exposure to water vapor and exhibits a semi-log relationship with relative humidity (RH). The sensor can detect RH variations from 1.8 to 95% with large resistance changes up to 4 orders of magnitude with no hysteresis and small temperature dependence. In addition, with a small thickness, the sensor can reach absorption equilibrium quickly with response and recovery times of ≤1.2 and ≤3 s, respectively. The fast response to humidity changes also allows the GNP thin-film sensor to distinguish signals from intermittent humidification/dehumidification cycles with a frequency up to 2.5 Hz. The printed sensors on flexible substrates show little sensitivity to bending deformation and can be embedded in a mask for human respiratory detection. In summary, this study demonstrates the feasibility of applying printing technology for the fabrication of thin-film humidity sensors, and the methodology developed can be further applied to fabricate many other types of nanoparticle-based sensor devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA