RESUMEN
BACKGROUND: Wnt/ß-catenin signaling plays a variety of roles in both the dental epithelium and mesenchyme at most stages of tooth development. In this study, we verified the roles of Hertwig's epithelial root sheath (HERS) breakdown in tooth root development. This breakdown results in formation of epithelial cell rests of Malassez (ERM). RESULTS: Following induction of ß-catenin stabilization in the epithelium of developing tooth at the moment of HERS breakdown, HERS failed to break down for ERM formation. HERS with stabilized ß-catenin was altered into a multicellular layer enveloping elongated root dentin with higher expression of junctional proteins such as Zo-1 and E-cadherin. Importantly, this impairment of HERS breakdown led to arrest of further root elongation. In addition, the portion of root dentin enveloped by the undissociated HERS remained in a hypomineralized state. The odontoblasts showed ectopically higher expression of pyrophosphate regulators including Ank and Npp1, whereas Tnap expression was unchanged. CONCLUSIONS: Our data suggest that Wnt/ß-catenin signaling is decreased in HERS for ERM formation during root development. Furthermore, ERM formation is important for further elongation and dentin mineralization of the tooth roots. These findings may provide new insight to understand the contribution of ERM to root formation.
Asunto(s)
Raíz del Diente , beta Catenina , beta Catenina/genética , beta Catenina/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Odontogénesis , Diferenciación CelularRESUMEN
While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.
Asunto(s)
Anemia , Trombocitopenia , Ratones , Animales , Proteína de la Matriz Oligomérica del Cartílago/genética , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ratones Transgénicos , Anemia/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismoRESUMEN
Cementum has been empirically regarded as an antiresorptive barrier against tooth roots. However, little is known about the factors of homeostasis and resistant mechanisms of tooth roots against resorption. Here, we investigated cementum factors and their interaction against resorption using transgenic mice exhibiting external cervical root resorption (ECRR). Ectopically thickened cervical cementum caused by functional inactivation of ectonucleotide pyrophosphotase/phosphodiesterase 1 (Enpp1) was susceptible to ECRR with aging. In addition, the inactivation of the suppressor of fused (Sufu), a Hedgehog signaling inhibitor, in cementoblasts led to ECRR. Interestingly, concurrent inactivation of Sufu and Enpp1 in cementoblasts remarkably exacerbated ECRR with higher Rankl expression. Cellular and molecular analyses using cementoblasts and bone marrow-derived macrophages indicated that Dickkopf-related protein 1 (Dkk1) induced by the inactivation of Sufu in cementoblasts has roles in the acceleration of ECRR triggered by Enpp1 inactivation. Using compound mutant mice for concurrent Wntless and Enpp1 inactivation, this synergistic cooperation of Dkk1 and Npp1 for resorption found in double mutant Sufu and Enpp1 mice was confirmed by the reproduction of amplified ECRR. On the basis of these findings, we conclude that proper Npp1 function and sustained Wnt activity in the cervical cementum are essential for the homeostasis of tooth roots against resorption in a physiological state.
Asunto(s)
Cemento Dental , Resorción Radicular , Ratones , Animales , Proteínas Hedgehog , Ratones Transgénicos , Transducción de Señal , Proteínas RepresorasRESUMEN
Periodontitis is an inflammatory disease caused by microorganisms that induce the destruction of periodontal tissue. Inflamed and damaged tissue produces various inflammatory cytokines, which activate osteoclasts and induce alveolar bone loss and, eventually, tooth loss. Sirt6 expression suppresses inflammation and bone resorption; however, its role in periodontitis remains unclear. We hypothesized that Sirt6 has a protective role in periodontitis. To understand the role of Sirt6 in periodontitis, we compared periodontitis with ligature placement around the maxillary left second molar in 8-week-old control (C57BL/6J) male mice to Sirt6-overexpressing Tg (Sirt6Tg) mice, and we observed the resulting phenotypes using micro-CT. MDL801, a Sirt6 activator, was used as a therapy for periodontitis through oral gavage. Pro-inflammatory cytokines and increased osteoclast numbers were observed in alveolar bone tissue under periodontitis surgery. In the same condition, interestingly, protein levels from Sirt6 were the most downregulated among sirtuins in alveolar bone tissue. Based on micro-CT and CEJ-ABC distance, Sirt6Tg was observed to resist bone loss against ligature-induced periodontitis. Furthermore, the number of osteoclasts was significantly reduced in Sirt6Tg-ligated mice compared with control-ligated mice, although systemic inflammatory cytokines did not change. Consistent with this observation, we confirmed that bone loss was significantly reduced when MDL801, a Sirt6 activator, was included in the ligation mouse model. Our findings demonstrate that Sirt6 activation prevents bone loss against ligature-induced periodontitis. Thus, a Sirt6 activator may provide a new therapeutic approach for periodontitis.
Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Sirtuinas , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Periodontitis/metabolismo , Inflamación/complicaciones , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/prevención & control , Osteoclastos/metabolismo , Modelos Animales de Enfermedad , Citocinas/metabolismo , Sirtuinas/genéticaRESUMEN
Defects in the middle ear ossicles - malleus, incus and stapes - can lead to conductive hearing loss. During development, neural crest cells (NCCs) migrate from the dorsal hindbrain to specific locations in pharyngeal arch (PA) 1 and 2, to form the malleus-incus and stapes, respectively. It is unclear how migratory NCCs reach their proper destination in the PA and initiate mesenchymal condensation to form specific ossicles. We show that secreted molecules sonic hedgehog (SHH) and bone morphogenetic protein 4 (BMP4) emanating from the pharyngeal endoderm are important in instructing region-specific NCC condensation to form malleus-incus and stapes, respectively, in mouse. Tissue-specific knockout of Shh in the pharyngeal endoderm or Smo (a transducer of SHH signaling) in NCCs causes the loss of malleus-incus condensation in PA1 but only affects the maintenance of stapes condensation in PA2. By contrast, knockout of Bmp4 in the pharyngeal endoderm or Smad4 (a transducer of TGFß/BMP signaling) in the NCCs disrupts NCC migration into the stapes region in PA2, affecting stapes formation. These results indicate that region-specific endodermal signals direct formation of specific middle ear ossicles.
Asunto(s)
Osículos del Oído/embriología , Endodermo/embriología , Endodermo/metabolismo , Cresta Neural/citología , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular , Supervivencia Celular , Eliminación de Gen , Proteínas Hedgehog , Yunque/embriología , Yunque/metabolismo , Martillo/embriología , Martillo/metabolismo , Ratones , Modelos Biológicos , Cresta Neural/embriología , Cresta Neural/metabolismo , Especificidad de Órganos , Faringe/embriología , Fenotipo , Estribo/embriología , Estribo/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Although functional association between Wnt signaling and bone homeostasis has been well described through genetic ablation of Wntless (Wls), the mechanisms of how osteoblastic Wls regulates the fate of bone marrow stromal cells (BMSCs) and hematopoietic stem cells (HSCs) in relation to age are not yet understood. Here, we generated Col2.3-Cre;Wlsfl/fl mice that were free from premature lethality and investigated age-related impacts of osteoblastic Wls deficiency on hematopoiesis, BM microenvironment, and maintenance of BMSCs (also known as BM-derived mesenchymal stem/stromal cells) and HSCs. Ablation of osteoblastic Wls deteriorated BM microenvironment and bone mass accrual along with age-independent effects on functions of BMSCs. Osteoblastic Wls deletion impaired HSC repopulation and progeny with skewing toward myeloid lineage cells only at old stage. As proven by hallmarks of stem cell senescence, osteoblastic Wls ablation differentially induced senescence of BMSCs and HSCs in relation to age without alteration in their BM frequency. Our findings support that deletion of Wls in Col2.3-expressing cells induces senescence of BMSCs and impairs BM microenvironment in age-independent manner. Overall, long-term deterioration in BM microenvironment contributes to age-related HSC senescence with impaired progeny and hematopoiesis, which also suggests possible roles of osteoblastic Wls on the maintenance of BM HSCs.
Asunto(s)
Envejecimiento/metabolismo , Células de la Médula Ósea/metabolismo , Eliminación de Gen , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Células Madre/metabolismo , Animales , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
ß-catenin, a key mediator of Wnt signaling, plays multiple roles in tooth development. However, the role of ß-catenin in Hertwig's epithelial root sheath (HERS) during root formation remains unclear. In this study, we generated inducible tissue-specific ß-catenin conditional knockout mice (Ctnnb1i∆shh ) to investigate how ß-catenin in HERS affects tooth root development. The inactivation of ß-catenin in HERS led to interrupted root elongation due to premature disruption of HERS. This phenotype was accompanied by reduced cell-cell adhesion and decreased expression of junctional proteins, as well as increased epithelial-to-mesenchymal transition of HERS cells upon ß-catenin depletion. Accordingly, stabilization of ß-catenin in HERS (Catnbi∆shh ) led to the formation of unfragmented HERS and resulted in the failure of HERS dissociation, with increased expression of junctional proteins. Our results suggest that fine control of ß-catenin is important for HERS to guide root formation through regulating its structural integrity.
Asunto(s)
Células Epiteliales/metabolismo , Odontogénesis/fisiología , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , beta Catenina/metabolismo , Animales , Ratones , Ratones NoqueadosRESUMEN
Tooth root development occurs through the interaction of multiple growth factors and transcription factors expressed in Hertwig's epithelial root sheath (HERS) and dental mesenchyme. Previously, we demonstrated that bobby sox homolog (Bbx) regulates odontoblast differentiation of human dental pulp stem cells. Here, we generated Bbx knockout (Bbx-/- ) mice to address the functional role of Bbx in tooth formation. During tooth development, Bbx was expressed in both dental epithelium and mesenchyme. However, molar and incisor morphology in Bbx-/- mice at postnatal Day 0 (P0) exhibited no prominent abnormalities compared with their wild-type (Bbx+/+ ) littermates. Until P28, the crown morphology in Bbx-/- mice was not distinctively different from Bbx+/+ littermates. Meanwhile, the length of the mandibular base in Bbx-/- mice was notably less at P28. Compared with Bbx+/+ mice, the mesial and distal root lengths of the first molar were reduced by 21.33% and 16.28% at P14 and 16.28% and 16.24% at P28, respectively, in Bbx-/- mice. The second molar of Bbx-/- mice also showed 10.16% and 6.4% reductions at P28 in the mesial and distal lengths, compared with Bbx+/+ mice, respectively. The gene expression analysis during early tooth root formation (P13) showed that the expression of dentin sialophosphoprotein (Dspp) was significantly decreased in Bbx-/- mice. Collectively, our data suggest that Bbx participates in tooth root formation and might be associated with the regulation of Dspp expression.
Asunto(s)
Dentina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Diente Molar/metabolismo , Odontogénesis/fisiología , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Epitelio/metabolismo , Femenino , Masculino , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Diente Molar/crecimiento & desarrollo , Odontoblastos/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis.
Asunto(s)
Fosfatasa Ácida/genética , Amelogénesis Imperfecta/genética , Proteínas del Esmalte Dental/genética , Genes Recesivos , Mutación , Fosfatasa Ácida/metabolismo , Amelogénesis Imperfecta/diagnóstico , Niño , Esmalte Dental/anomalías , Proteínas del Esmalte Dental/metabolismo , Exones , Femenino , Homocigoto , Humanos , Masculino , Linaje , Conformación Proteica , Alineación de Secuencia , TurquíaRESUMEN
Supplemental Angiopoietin 1 (Ang1) exerts its therapeutic potential on microvascular regression-associated diseases, and this potential is linked with the function of hematopoietic stem cells (HSCs). However, the underlying mechanisms of the effect of enhanced angiogenesis on the modulation of HSCs are not yet defined. Here, we generated transgenic mice expressing Cartilage Oligomeric Matrix Protein (COMP)-Ang1 in keratin 14-expressing cells. The mutant animals expressed excessive angiogenic characteristics in the skin and bone marrow (BM) along with redder skin with more numerous and branched vessels compared with their wild-type (WT) littermates. The mutants displayed reduced long bone formation and osteoclast activity than did WT littermates and had fewer CD150+CD48-Lineage-Sca-1+c-Kit+ (LSK) cells in the BM. The mutants also exhibited greater senescence-associated (SA) ß-gal activity, p16INK4a protein expression, and superoxide anion levels in CD150+CD48-LSK cells in the BM. Furthermore, transplantation assay revealed that the mutant-derived LSK cells were inferior to the cells derived from WT littermate in inducing competitive repopulating capacity in the recipients. Collectively, our results demonstrate that persistent and prolonged administration of COMP-Ang1 by inducible transgenic expression mediates excessive angiogenesis in the body and impairs BM microenvironment, eventually leading to senescence of BM HSCs.
Asunto(s)
Angiopoyetina 1/genética , Médula Ósea/metabolismo , Proteína de la Matriz Oligomérica del Cartílago/genética , Microambiente Celular , Senescencia Celular , Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteínas Recombinantes de Fusión/genética , Animales , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Ratones Transgénicos , Mutación/genética , Neovascularización Fisiológica , Osteoclastos , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Despite the growing interest in adipose tissue as a therapeutic target of metabolic diseases, the identity of adipocyte precursor cells (preadipocytes) and the formation of adipose tissue during embryonic development are still poorly understood. Here, we clarified the identity and dynamic processes of preadipocytes in mouse white adipose tissue during embryogenesis through direct examination, lineage tracing and culture systems. Surprisingly, we found that lipid-lacking but perilipin(+) or adiponectin(+) proliferating preadipocytes started to emerge at embryonic day 16.5, and these cells underwent active proliferation until birth. Moreover, these preadipocytes resided as clusters and were distributed along growing adipose vasculatures. Importantly, the embryonic preadipocytes exhibited considerable coexpression of stem cell markers, such as CD24, CD29 and PDGFRα, and a small portion of preadipocytes were derived from PDGFRß(+) mural cells, in contrast to the adult preadipocytes present in the stromal vascular fraction. Further analyses with in vitro and ex vivo culture systems revealed a stepwise but dynamic regulation of preadipocyte formation and differentiation during prenatal adipogenesis. To conclude, we unraveled the identity and characteristics of embryonic preadipocytes, which are crucial for the formation and expansion of adipose tissue during embryogenesis.
Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/embriología , Proteínas Portadoras/metabolismo , Proliferación Celular/fisiología , Fosfoproteínas/metabolismo , Células 3T3-L1 , Tejido Adiposo/irrigación sanguínea , Animales , Compuestos Azo , Antígeno CD24/metabolismo , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Galactósidos , Indoles , Integrina beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Perilipina-1 , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estadísticas no ParamétricasRESUMEN
Osteoclasts form a bone marrow (BM) cavity serving as a hematopoietic niche for the maintenance of hematopoietic stem cells (HSCs). However, the role of osteoclasts in the BM has been controversially reported and remains to be further understood. In the present study, we investigated how osteoclasts affect the modulation of hematopoietic stem/progenitor cells in the BM by administering bisphosphate alendronate (ALN) to B6 mice for 21 consecutive days to inhibit osteoclast activity. ALN treatment caused a reduction in the number of tartrate-resistant acid phosphate (TRAP)-positive osteoclast cells and an increase in bone mineral density, particularly in the trabecular zone, but not in the cortical zone of the BM. Osteoclast inhibition caused by ALN treatment decreased mitochondrial reactive oxygen species (ROS) generation and SA-ß-gal activity of CD150+ CD48- Lineage-Sca-1+ c-Kit+ (LSK) cells, eventually leading to an improvement in the engraftment potential and self-renewal activity of HSCs. Moreover, ALN-treated mice exhibited an enhanced resistance of HSCs in response to the genotoxic stress of 5-fluorouracil, as determined by mitochondrial ROS generation, SA-ß-gal activity, and p16INK4a expression in subsets of LSK and CD150+ CD48- LSK cells as well as competitive assay. Collectively, our findings indicate that inhibition of osteoclast activity improves the long-term engraftment potential and stress resistance of HSCs. Stem Cells 2016;34:2601-2607.
Asunto(s)
Alendronato/administración & dosificación , Alendronato/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Osteoclastos/metabolismo , Estrés Fisiológico , Animales , Antineoplásicos/efectos adversos , Densidad Ósea/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/fisiología , Autorrenovación de las Células/efectos de los fármacos , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Células Madre de Sangre Periférica/citología , Bazo/citología , Estrés Fisiológico/efectos de los fármacos , Factores de TiempoRESUMEN
Sonic Hedgehog (Shh) signaling plays a major role in and is essential for regulation, patterning, and proliferation during renal development. Smoothened (Smo) plays a pivot role in transducing the Shh-glioma-associated oncogene Kruppel family member. However, the cellular and molecular mechanism underlying the role of sustained Smo activation in postnatal kidney development is still not clearly understood. Using a conditional knockin mouse model that expresses a constitutively activated form of Smo (SmoM2) upon Homeobox-B7-mediated recombination (Hoxb7-Cre), the effects of Shh signaling were determined in postnatal kidney development. SmoM2;Hoxb7-Cre mutant mice showed growth retardation with a reduction of body weight. Constitutive activation of Smo in the renal collecting ducts caused renal hypoplasia, hydronephrosis, and hydroureter. The parenchymal area and glomerular numbers were reduced, but the glomerular density was increased in SmoM2;Hoxb7-Cre mutant mice. The expression of Patched 1, the receptor of Shh and a downstream target gene of the Shh signaling pathway, was highly restricted and it was upregulated in the inner medullary collecting ducts of the kidney. The proliferative cells in the mesenchyme and collecting ducts were decreased in SmoM2;Hoxb7-Cre mutant mice. This study showed for the first time that sustained Smo inhibits postnatal kidney development by suppressing the proliferation of the mesenchyme and medullary collecting ducts in mice.
Asunto(s)
Hidronefrosis/metabolismo , Enfermedades Renales/metabolismo , Receptor Smoothened/metabolismo , Enfermedades Ureterales/metabolismo , Animales , Diferenciación Celular , Hidronefrosis/genética , Hidronefrosis/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Ratones , Ratones Transgénicos , Receptor Smoothened/genética , Enfermedades Ureterales/genética , Enfermedades Ureterales/patologíaRESUMEN
Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in ß-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active ß-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active ß-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through ß-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration.
Asunto(s)
Fosfatasa Ácida/biosíntesis , Calcificación Fisiológica/fisiología , Diferenciación Celular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Odontoblastos/enzimología , Fosfatasa Ácida/genética , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Odontoblastos/citologíaRESUMEN
It has been previously reported that caveolin-1 (Cav-1) knockout mice exhibit increased bone size and stiffness. However, the expression and role of Cav-1 on periodontal tissue is poorly understood. The aim of this study was to investigate the immunohistochemical expression of Cav-1 in the mouse periodontium and explore the role of Cav-1 on osteoblastic and cementoblastic differentiation in human periodontal ligament cells (hPDLCs), cementoblasts, and osteoblasts. To reveal the molecular mechanisms of Cav-1 activity, associated signaling pathways were also examined. Immunolocalization of Cav-1 was studied in mice periodontal tissue. Differentiation was evaluated by ALP activity, alizarin red S staining, and RT-PCR for marker genes. Signal transduction was analyzed using Western blotting and confocal microscopy. Cav-1 expression was observed in hPDLCs, cementoblasts, and osteoblasts of the periodontium both in vivo and in vitro. Inhibition of Cav-1 expression by methyl-ß-cyclodextrin (MßCD) and knockdown of Cav-1 by siRNA promoted osteoblastic and cementoblastic differentiation by increasing ALP activity, calcium nodule formation, and mRNA expression of differentiation markers in hPDLCs, cementoblasts, and osteoblasts. Osteogenic medium-induced BMP-2 and BMP-7 expression, and phosphorylation of Smad1/5/8 were enhanced by MßCD and siRNA knockdown of Cav-1, which was reversed by BMP inhibitor noggin. MßCD and Cav-1 siRNA knockdown increased OM-induced AMPK, Akt, GSK3ß, and CREB phosphorylation, which were reversed by Ara-A, a specific AMPK inhibitor. Moreover, OM-induced activation of p38, ERK, JNK, and NF-κB was enhanced by Cav-1 inhibition. This study demonstrates, for the first time, that Cav-1 is expressed in developing periodontal tissue and in vitro in periodontal-related cells. Cav-1 inhibition positively regulates osteoblastic differentiation in hPDLCs, cementoblasts, and osteoblasts via BMP, AMPK, MAPK, and NF-κB pathway. Thus, Cav-1 inhibition may be a novel molecular target for therapeutic approaches in periodontitis or osteolytic disease.
Asunto(s)
Caveolina 1/biosíntesis , Cemento Dental/citología , Osteoblastos/citología , Periodoncio/citología , Periodoncio/metabolismo , Animales , Western Blotting , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Endogámicos ICR , Ligamento Periodontal/citología , Ligamento Periodontal/crecimiento & desarrollo , Periodoncio/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiologíaRESUMEN
Human periodontal ligament fibroblasts (hPLFs) are exposed to oxidative stress during periodontal inflammation and dental treatments. It is hypothesized that hydrogen peroxide (H2O2)-mediated oxidative stress decreases survival and osteogenic differentiation of hPLFs, whereas these decreases are prevented by activation of the Wnt pathway. However, there has been a lack of reports that define the exact roles of canonical Wnt/ß-catenin signaling in H2O2-exposed hPLFs. Treatment with H2O2 reduced viability and proliferation in hPLFs in a dose- and time-dependent manner and led to mitochondria-mediated apoptosis. Pretreatment with lithium chloride (LiCl) or Wnt1 inhibited the oxidative damage that occurred in H2O2-exposed hPLFs. However, knockout of ß-catenin or treatment with DKK1 facilitated the H2O2-induced decreases in viability, mitochondrial membrane potential, and Bcl-2 induction. Osteoblastic differentiation of hPLFs was also inhibited by combined treatment with 100 µM H2O2, as evidenced by the decreases in alkaline phosphatase (ALP) activity and mineralization. H2O2-mediated inhibition of osteoblast differentiation in hPLFs was significantly attenuated in the presence of 500 ng/ml Wnt1 or 20 mM LiCl. In particular, H2O2 stimulated the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) at protein and mRNA levels in hPLFs, whereas the induction was almost completely suppressed in the presence of Wnt1 or LiCl. Furthermore, siRNA-mediated silencing of Nrf2 blocked H2O2-induced decreases in ALP activity and mineralization of hPLFs with the concomitant restoration of runt-related transcription factor 2 and osteocalcin mRNA expression and ALP activity. Collectively, these results suggest that activation of the Wnt/ß-catenin pathway improves proliferation and mineralization in H2O2-exposed hPLFs by downregulating Nrf2.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Ligamento Periodontal/efectos de los fármacos , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Adulto , Fosfatasa Alcalina/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Ligamento Periodontal/citología , Ligamento Periodontal/enzimología , Adulto Joven , beta Catenina/genéticaRESUMEN
A recent report showed that thymosin beta-4 (Tß4) is expressed during the development of tooth germ, but its effect on osteoblastic/cementoblastic differentiation is a controversial topic. Furthermore, the precise expression and function of Tß4 in periodontal tissue remains unclear. Therefore, the purpose of this study was to investigate the immunolocalization of Tß4 in the developing periodontium of mouse, the function of Tß4 in osteoblastic/cementoblastic differentiation, and the underlying mechanism regulating periodontal regeneration in human periodontal ligament cells (hPDLCs), cementoblasts, and osteoblasts. Tß4 expression was observed in differentiating hPDLCs, osteoblasts of the periodontium during development, as well as in mature tissue. Higher Tß4 expression was observed in hPDLCs than in cementoblasts and osteoblasts in the developing periodontium. The expression of Tß4 mRNA and protein gradually increased during PDL cell differentiation. The downregulation of Tß4 expression by Tß4 siRNA transfection inhibited osteoblastic differentiation by decreasing calcium nodule formation, alkaline phosphatase (ALP) activity, and mRNA expression of differentiation markers in hPDLCs, cementoblasts, and osteoblasts. In contrast, Tß4 activation using a Tß4 peptide, promoted these processes by activation of Akt, p38, ERK MAPKs, and the NF-κB pathway. The expression of nuclear NFATc1 was upregulated by Tß4 peptide in hPDLCs. Inhibition of the calcineurin/NFATc1 pathway by cyclosporin A and FK506, attenuated Tß4-induced osteoblastic differentiation and activation of Wnt-related genes, as well as nuclear ß-catenin in hPDLCs. In conclusion, this study demonstrates, for the first time, that Tß4 is expressed in developing periodontal tissue and that its expression is associated with osteoblastic/cementoblastic differentiation. These results suggests that Tß4 is a potential therapeutic target for periodontal regeneration or bone disease.
Asunto(s)
Diferenciación Celular , Cemento Dental/citología , Osteoblastos/citología , Ligamento Periodontal/embriología , Timosina/biosíntesis , Actinas/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Cemento Dental/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Osteoblastos/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , ARN Interferente Pequeño/genética , Regeneración , Timosina/genéticaRESUMEN
The TGF-ß/BMP family plays an important role in multiple stages of tooth development. TGF-ß/BMP signaling is required for odontoblast differentiation and dentin formation; however, the precise molecular mechanisms underlying dentin formation remain unclear. To address the role of TGF-ß/BMP signaling in dentin formation, we analyzed mice in which Smad4, a key intracellular mediator of TGF-ß/BMP signaling, was subjected to tissue-specific ablation under the control of Dspp, OC, or Col1a1 promoters. Three independent Smad4 conditional knockout mice exhibited various dentin defects in the crowns and roots of their molars depending on the transactivator. In all mutant molars, crown dentin thickness was thinner than that of the control. In addition, impaired dentin was found in the cervical region and root furcation area. Although the initial differentiation of odontoblasts was normal, odontoblast polarity abruptly decreased and the expression of Col1a1, OC, and Dspp was reduced in the odontoblasts of mutant molars. In Dspp-Cre-mediated Smad4 disruption mice, primary dentin formation was slightly delayed, while secondary dentin formation was severely affected in the cervical region of the molars. These results indicate that TGF-ß/BMP signaling is required for odontoblast maturation and dentin formation in a stage- and site-dependent manner.
Asunto(s)
Dentina/crecimiento & desarrollo , Odontoblastos/metabolismo , Proteína Smad4/fisiología , Animales , RatonesRESUMEN
In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes. Interestingly, NFI-C controls postnatal bone formation but does not influence prenatal bone development. We also found decreased NFI-C expression in osteogenic cells from human osteoporotic patients. Notably, transplantation of Nfic-overexpressing BMSCs stimulates osteoblast differentiation and new bone formation, but inhibits adipocyte differentiation by suppressing peroxisome proliferator-activated receptor gamma expression in Nfic(-/-) mice showing an age-related osteoporosis-like phenotype. Finally, NFI-C directly regulates Osterix expression but acts downstream of the bone morphogenetic protein-2-Runx2 pathway. These results suggest that NFI-C acts as a transcriptional switch in cell fate determination between osteoblast and adipocyte differentiation in BMSCs. Therefore, regulation of NFI-C expression in BMSCs could be a novel therapeutic approach for treating age-related osteoporosis.
Asunto(s)
Factores de Transcripción NFI/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Factores de Transcripción/biosíntesis , Anciano , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Factores de Transcripción NFI/genética , Osteogénesis/fisiología , Factor de Transcripción Sp7 , TransfecciónRESUMEN
Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.