Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Appl Mater Interfaces ; 15(28): 33721-33731, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37395597

RESUMEN

This study proposes the possibility of employing metal iodates as novel gas-sensing materials synthesized using a facile chemical precipitation method. An extensive survey of a library of metal iodates reveals that cobalt, nickel, and copper iodates are useful for gas sensor applications. Material analysis conducted using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravity differential temperature analysis, and Raman spectroscopy enables us to understand the thermal behavior and optimize post-annealing conditions. The evaluation of the gas-sensing performance of the specified metal iodates indicates that all of them display p-type sensing behavior and exhibit a high gas response toward different gases: a gas response of 18.6 by cobalt iodate to 1.8 ppm of acetone, a gas response of 4.3 by nickel iodate to 1 ppm of NO2, and a gas response of 6.6 by copper iodate to 1.8 ppm of H2S. Further investigation of the temperature-programmed reduction of H2 and polarization-electric field hysteresis analyses elucidates that the high gas response originates from the inherent characteristics of metal iodates, such as the high oxygen-reduction ability of iodine, highlighting the potential of the iodates as novel gas-sensing materials.

2.
ACS Nano ; 17(12): 11279-11289, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37125893

RESUMEN

Transition-metal dichalcogenides possess high carrier mobility and can be scaled to sub-nanometer dimensions, making them viable alternative to Si electronics. WSe2 is capable of hole and electron carrier transport, making it a key component in CMOS logic circuits. However, since the p-type electrical performance of the WSe2-field effect transistor (FET) is still limited, various approaches are being investigated to circumvent this issue. Here, we formed a heterostructural multilayer WSe2 channel and solution-processed aluminum-doped zinc oxide (AZO) for compositional modification of WSe2 to obtain a device with excellent electrical properties. Supplying oxygen anions from AZO to the WSe2 channel eliminated subgap states through Se-deficiency healing, resulting in improved transport capacity. Se vacancies are known to cause mobility degradation due to scattering, which is mitigated through ionic compensation. Consequently, the hole mobility can reach high values, with a maximum of approximately 100 cm2/V s. Further, the transport behavior of the oxygen-doped WSe2-FET is systematically analyzed using density functional theory simulations and photoexcited charge collection spectroscopy measurements.

3.
ACS Nano ; 17(19): 19076-19086, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37772990

RESUMEN

The crucial role of nanocrystalline morphology in stabilizing the ferroelectric orthorhombic (o)-phase in doped-hafnia films is achieved via chemical solution deposition (CSD) by intentionally retaining carbonaceous impurities to inhibit grain growth. However, in the present study, large-grained (>100 nm) La-doped HfO2 (HLO) films are grown directly on silicon by adopting engineered water-diluted precursors with a minimum carbonaceous load and excellent shelf life. The o-phase stabilization is accomplished through a well-distributed La dopant, which generates uniformly populated oxygen vacancies, eliminating the need for oxygen-scavenging electrodes. These oxygen-deficient HLOs show a maximum remnant polarization of 37.6 µC/cm2 (2Pr) without wake-up and withstand large fields (>6.2 MV/cm). Furthermore, CSD-HLO in series with Al2O3 improves switching of MOSFETs (with an amorphous oxide channel) based on the negative capacitance effect. Thus, uniformly distributed oxygen vacancies serve as a standalone factor in stabilizing the o-phase, enabling efficient wake-up-free ferroelectricity without the need for nanostructuring, capping stresses, or oxygen-reactive electrodes.

4.
ACS Nano ; 16(6): 9267-9277, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35696345

RESUMEN

The technological ability to detect a wide spectrum range of illuminated visible-to-NIR is substantially improved for an amorphous metal oxide semiconductor, indium gallium zinc oxide (IGZO), without employing an additional photoabsorber. The fundamentally tuned morphology via structural engineering results in the creation of nanopores throughout the entire thickness of ∼30 nm. See-through nanopores have edge functionalization with vacancies, which leads to a large density of substates near the conduction band minima and valence band maxima. The presence of nanoring edges with a high concentration of vacancies is investigated using chemical composition analysis. The process of creating a nonporous morphology is sophisticated and is demonstrated using a wafer-scale phototransistor array. The performance of the phototransistors is assessed in terms of photosensitivity (S) and photoresponsivity (R); both are of high magnitudes (S = 8.6 × 104 at λex = 638 nm and Pinc = 512 mW cm2-; R = 120 A W1- at Pinc = 2 mW cm2- for the same λex). Additionally, the 7 × 5 array of 35 phototransistors is effective in sensing and reproducing the input image by responding to selectively illuminated pixels.

5.
ACS Appl Mater Interfaces ; 13(50): 60250-60260, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34894665

RESUMEN

Ultralow-power logic devices are next-generation electronics in which their maximum efficacies are realized at minimum input power expenses. The integration of ferroelectric negative capacitors in the regular gate stacks of two-dimensional field-effect transistors addresses two intriguing challenges in today's electronics; short channel effects and high operating voltages. The complementary-metal-oxide-semiconductor-compatible Hf0.5Zr0.5O2 (HZO) is an excellent ferroelectric material crystallized in a noncentrosymmetric o-phase. The present work is the first to utilize pulsed laser deposition (PLD)-grown phase-pure ferroelectric HZO to achieve steep slope negative capacitance (NC) in field effect transistors (FETs). A dual-step growth strategy is designed to achieve phase-pure orthorhombic HZO on silicon and other conducting substrates. The room-temperature PLD-grown amorphous HZO is allowed to crystallize using rapid thermal annealing at 600 °C. The polycrystalline orthorhombic HZO is further integrated with atomic layer deposition-grown HfO2 to achieve a stable NC transition. The stack is further integrated into the molybdenum disulfide channel to achieve steep switching and a hysteresis-free operation of the resulting FETs. The subthreshold swings of the FETs are 20.42 and 26.16 mV/dec in forward and reverse bias conditions, respectively.

6.
ACS Nano ; 15(9): 15362-15370, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34463475

RESUMEN

Neuromorphic engineering, a methodology for emulating synaptic functions or neural systems, has attracted tremendous attention for achieving next-generation artificial intelligence technologies in the field of electronics and photonics. However, to emulate human visual memory, an active pixel sensor array for neuromorphic photonics has yet to be demonstrated, even though it can implement an artificial neuron array in hardware because individual pixels can act as artificial neurons. Here, we present a neuromorphic active pixel image sensor array (NAPISA) chip based on an amorphous oxide semiconductor heterostructure, emulating the human visual memory. In the 8 × 8 NAPISA chip, each pixel with a select transistor and a neuromorphic phototransistor is based on a solution-processed indium zinc oxide back channel layer and sputtered indium gallium zinc oxide front channel layer. These materials are used as a triggering layer for persistent photoconductivity and a high-performance channel layer with outstanding uniformity. The phototransistors in the pixels exhibit both photonic potentiation and depression characteristics by a constant negative and positive gate bias due to charge trapping/detrapping. The visual memory and forgetting behaviors of the NAPISA can be successfully demonstrated by using the pulsed light stencil method without any software or simulation. This study provides valuable information to other neuromorphic devices and systems for next-generation artificial intelligence technologies.


Asunto(s)
Inteligencia Artificial , Electrónica , Humanos
7.
ACS Sens ; 4(12): 3291-3297, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31789504

RESUMEN

Water sensors are a type of level sensor that can be used in various applications requiring the sensing of water levels, such as in dams, nuclear power plants, water pipes, water tanks, and dehumidifiers. In particular, water sensors in water ingress monitoring systems (WIMS) protect lives and property from disasters caused by water leakage and flooding. Here, a resistive water sensor for WIMS that incorporates poly(3,4-ethylenedioxythinophene):poly(styrene sulfonate) (PEDOT:PSS) grafted with poly(ethylene glycol) methyl ether (PEGME) (PEDOT:PSS-g-PEGME copolymer) as high-conductivity electrodes and laser-treated PEDOT:PSS-g-PEGME copolymer as the low-conductivity resistive component is reported. The configuration of the water sensor is modeled as two parallel resistors (Rlaser treated PEDOT:PSS||Rwater) when water comes into contact with the sensor surface. The two-resistor configuration exhibits a better performance in comparison with single-resistor configurations comprising only PEDOT:PSS-g-PEGME copolymer or laser-treated PEDOT:PSS-g-PEMGE copolymer. Moreover, PEDOT:PSS-g-PEGME copolymer is applied to the sensor to improve the stability of PEDOT:PSS in water. We demonstrate that the sensor can detect the water level in real time with high sensitivity and accuracy, and thus has potential in applications for monitoring water-related hazards.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Técnicas Electroquímicas/métodos , Polietilenglicoles/química , Polímeros/química , Poliestirenos/química , Agua/análisis , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos de la radiación , Técnicas Electroquímicas/instrumentación , Electrodos , Rayos Infrarrojos , Rayos Láser , Polietilenglicoles/efectos de la radiación , Tereftalatos Polietilenos/química , Polímeros/efectos de la radiación , Poliestirenos/efectos de la radiación
9.
Toxicol Res ; 30(1): 55-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24795801

RESUMEN

OBJECTIVES: The use of indium compounds, especially those of small size, for the production of semiconductors, liquid-crystal panels, etc., has increased recently. However, the role of particle size or the chemical composition of indium compounds in their toxicity and distribution in the body has not been sufficiently investigated. Therefore, the aim of this study was to examine the effects of particle size and the chemical composition of indium compounds on their toxicity and distribution. METHODS: Male Sprague-Dawley rats were exposed to two different-sized indium oxides (average particle sizes under 4,000 nm [IO_4000] and 100 nm [IO_100]) and one nano-sized indium-tin oxide (ITO; average particle size less than 50 nm) by inhalation for 6 hr daily, 5 days per week, for 4 weeks at approximately 1 mg/m(3) of indium by mass concentration. RESULTS: We observed differences in lung weights and histopathological findings, differential cell counts, and cell damage indicators in the bronchoalveolar lavage fluid between the normal control group and IO- or ITO-exposed groups. However, only ITO affected respiratory functions in exposed rats. Overall, the toxicity of ITO was much higher than that of IOs; the toxicity of IO_4000 was higher than that of IO_100. A 4-week recovery period was not sufficient to alleviate the toxic effects of IO and ITO exposure. Inhaled indium was mainly deposited in the lungs. ITO in the lungs was removed more slowly than IOs; IO_4000 was removed faster than IO_100. IOs were not distributed to other organs (i.e., the brain, liver, and spleen), whereas ITO was. Concentrations of indium in the blood and organ tissues were higher at 4 weeks after exposure. CONCLUSIONS: The effect of particle size on the toxicity of indium compounds was not clear, whereas chemical composition clearly affected toxicity; ITO showed much higher toxicity than that of IO.

10.
Saf Health Work ; 3(3): 224-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23019535

RESUMEN

OBJECTIVES: This study was conducted in order to obtain information concerning the health hazards that may result from a 13 week inhalation exposure of n-pentane in Sprague-Dawley rats. METHODS: This study was conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines for the testing of chemicals No. 413 'Subchronic inhalation toxicity: 90-day study (as revised in 2009)'. The rats were divided into 4 groups (10 male and 10 female rats in each group), and were exposed to 0, 340, 1,530, and 6,885 ppm n-pentane in each exposure chamber for 6 hour/day, 5 days/week, for 13 weeks. All of the rats were sacrificed at the end of the treatment period. During the test period, clinical signs, mortality, body weights, food consumption, ophthalmoscopy, locomotion activity, urinalysis, hematology, serum biochemistry, gross findings, organ weights, and histopathology were assessed. RESULTS: During the period of testing, there were no treatment related effects on the clinical findings, body weight, food consumption, ophthalmoscopy, urinalysis, hematology, serum biochemistry, gross findings, relative organ weight, and histopathological findings. CONCLUSION: The no-observable-adverse-effect level (NOAEL) of n-pentane is evaluated as being more than 6,885 ppm (20.3 mg/L) in both male and female rats. n-pentane was not a classified specific target organ toxicity in the globally harmonized classification system (GHS).

11.
Saf Health Work ; 2(3): 282-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22953212

RESUMEN

OBJECTIVES: We sought to establish a novel method to generate nano-sized carbon black particles (nano-CBPs) with an average size smaller than 100 nm for examining the inhalation exposure risks of experimental rats. We also tested the effect of nano-CBPs on the pulmonary and circulatory systems. METHODS: We used chemical vapor deposition (CVD) without the addition of any additives to generate nano-CBPs with a particle size (electrical mobility diameter) of less than 100nm to examine the effects of inhalation exposure. Nano-CBPs were applied to a nose-only inhalation chamber system for studying the inhalation toxicity in rats. The effect on the lungs and circulatory system was determined according to the degree of inflammation as quantified by bronchoalveolar lavage fluid (BALF). The functional alteration of the hemostatic and vasomotor activities was measured by plasma coagulation, platelet activity, contraction and relaxation of blood vessels. RESULTS: Nano-CBPs were generated in the range of 83.3-87.9 nm. Rats were exposed for 4 hour/day, 5 days/week for 4 weeks to 4.2 × 10(6), 6.2 × 10(5), and 1.3 × 10(5) particles/cm(3). Exposure of nano-CBPs by inhalation resulted in minimal pulmonary inflammation and did not appear to damage the lung tissue. In addition, there was no significant effect on blood functions, such as plasma coagulation and platelet aggregation, or on vasomotor function. CONCLUSION: We successfully generated nano-CBPs in the range of 83.3-87.9 nm at a maximum concentration of 4.2 × 10(6) particles/cm(3) in a nose-only inhalation chamber system. This reliable method can be useful to investigate the biological and toxicological effects of inhalation exposure to nano-CBPs on experimental rats.

12.
Food Chem Toxicol ; 47(9): 2294-301, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19527766

RESUMEN

The subchronic toxicity of sec-butanethiol was investigated in Sprague-Dawley rats following a 13-week period of repeated inhalation exposure. Four groups of 10 rats of each sex were exposed to sec-butanethiol vapor by whole-body inhalation at 0, 25, 100, or 400 ppm for 6 h per day, 5 days a week over a 13-week period. At 400 ppm, both genders exhibited a decrease in food consumption, although a decrease in the body weight gain was only observed in females. Hematological investigations revealed a decrease in red blood cell, hemoglobin, and hematocrit in both the male and female groups, whilst the female group exhibited an increase in the mean corpuscular volume and a decrease in the mean corpuscular hemoglobin concentration. There was an increase in kidney weight for both genders but the liver weight was only higher in males than controls. Histopathological alterations were found in the kidneys, spleen, and nasal olfactory epithelium. There were no treatment-related effects observed in both genders at 100 ppm. Under the present experimental conditions, the target organs were determined to be the blood cells, the kidneys, the liver, and the nasal turbinates in rats. The no-observed-effect level was considered to be 100 ppm in rats.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Compuestos de Sulfhidrilo/toxicidad , Administración por Inhalación , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Índices de Eritrocitos/efectos de los fármacos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Nivel sin Efectos Adversos Observados , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/patología , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA