RESUMEN
Direct synthesis of thermodynamically less favorable (Z)-vinyl sulfones presents a notable challenge in organic synthesis. In addition, the development of a stereodivergent synthesis for (E)- and (Z)-vinyl sulfones is crucial but remains elusive. In this study, we present a hydrosulfonylation of aryl-substituted alkynes, achieving a stereodivergent synthesis of (E)- and (Z)-vinyl sulfones by leveraging both thermodynamic and kinetic controls. Notably, the synthesis of challenging (Z)-vinyl sulfones was achieved through a kinetically controlled process without the need for a catalyst. To synthesize (E)-vinyl sulfones, unconventional visible light-mediated isomerization was employed as a means of facilitating the transition to the thermodynamically favored form. The present study encompasses a comprehensive experimental and computational investigation, which provides valuable insights into the reaction mechanism. This investigation reveals two plausible isomerization pathways: a novel double spin-flip mechanism and a hydrogen atom transfer process in the presence of eosin Y. This study not only advances our understanding of isomerization mechanisms beyond conventional energy-transfer routes but also offers a robust and switchable strategy for synthesizing (E)- and (Z)-vinyl sulfones, thereby providing a versatile avenue for the creation of valuable compounds in the fields of organic synthesis and medicinal chemistry.
RESUMEN
Nitrogen oxides (NOx) are major environmental pollutants and to neutralize this long-term environmental threat, new catalytic methods are needed. Although there are biological denitrification processes involving four different enzymatic reactions to convert nitrate (NO3 -) into dinitrogen (N2), it is unfortunately difficult to apply in industry due to the complexity of the processes. In particular, nitrate is difficult to functionalize because of its chemical stability. Thus, there is no organometallic catalysis to convert nitrate into useful chemicals. Herein, we present a nickel pincer complex that is effective as a bifunctional catalyst to stepwise deoxygenate NO3 - by carbonylation and further through C-N coupling. By using this nickel catalysis, nitrate salts can be selectively transformed into various oximes (>20 substrates) with excellent conversion (>90 %). Here, we demonstrate for the first time that the highly inert nitrate ion can be functionalized to produce useful chemicals by a new organonickel catalysis. Our results show that the NOx conversion and utilization (NCU) technology is a successful pathway for environmental restoration coupled with value-added chemical generation.
RESUMEN
A high-valent manganese(IV)-hydroxo porphyrin π-cation radical complex, [Mn(IV)(OH)(Porp+â¢)(X)]+, was synthesized and characterized spectroscopically. The Mn porphyrin intermediate was highly reactive in alkane hydroxylation and oxygen atom transfer reactions. More importantly, the Mn porphyrin intermediate reacted with water at a fast rate, resulting in the dioxygen evolution. To the best of our knowledge, we report the first manganese Cpd I model compound bearing a porphyrin π-cation radical ligand with a high reactivity in oxidation reactions, including water oxidation.
RESUMEN
The discovery and implementation of media that derive from bioinspired designs and bear optical readouts featuring large Stokes shifts are of continued interest to a wide variety of researchers and clinicians. Myco-F, a novel mycophenolic acid precursor-based probe features a cleavable tert-butyldimethylsiloxy group to allow for fluoride detection. Myco-F exhibits high selectivity and specificity towards F- (Stokes shift = 120 nm). All measurements were performed in complete aqueous media (LOD=0.38 µM). Myco-F enables detection of fluoride ions in living HEK293 cells and localizes in the eye region (among other regions) of the zebrafish. DFT calculations support the proposed ESIPT working photomechanism.
Asunto(s)
Fluoruros , Pez Cebra , Animales , Humanos , Ácido Micofenólico , Células HEK293 , Colorantes FluorescentesRESUMEN
Electrochemical reorganization of complex structures is directly related to catalytic reactivity; thus, the geometric changes of catalysts induced by electron transfer should be considered to scrutinize the reaction mechanism. Herein, we studied electron-induced reorganization patterns of six-coordinate Co complexes with neutral N-donor ligands. Upon two-electron transfer into a Co center enclosed within a bulky π-acceptor ligand, the catalytic site exhibited different reorganization patterns depending on the ligand characteristics. While a bipyridyl ligand released Co-bound solvent (CH3CN) to open a reaction site, a phenanthroline ligand caused Co-Narm (side "arm" of NNN-ligand) bond dissociation. The first electron transfer occurred in the Co(II/I) reduction step and the second electron entered the bulky π-acceptor, of which redox steps were assigned from cyclic voltammograms, magnetic moment measurements, and DFT calculations. In comparison, the Co complex of [NNNNCH3-Co(CH3CN)3](PF6)2 ([1-(CH3CN)3](PF6)2) showed a high H2 evolution reactivity (HER), whereas a series of Co complexes with bulky π-acceptors such as [NNNNCH3-Co(L)(CH3CN)](PF6)2 (L = phen ([2-CH3CN](PF6)2), bpy ([3-CH3CN](PF6)2), [NNNNCH3-Co(tpy)](PF6)2 ([4](PF6)2), and [NNNCH2-Co(phen)(CH3CN)](PF6)2 ([5-CH3CN](PF6)2)) suppressed the HER but rather enhanced the CO2 reduction reaction. The metal-ligand cooperative redox steps enabled the shift of Co(I) reactivity toward CO2 reduction. Additionally, the amine pendant attached to the NNNNCH3-ligand could stabilize the CO2 reduction intermediate through the hydrogen-bonding interaction with the Co-CO2H adduct.
RESUMEN
A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), Pâ¢-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or Pâ¢-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.
RESUMEN
Nitrogen oxide (NOx) conversion is an important process for balancing the global nitrogen cycle. Distinct from the biological NOx transformation, we have devised a synthetic approach to this issue by utilizing a bifunctional metal catalyst for producing value-added products from NOx. Here, we present a novel catalysis based on a Ni pincer system, effectively converting Ni-NOx to Ni-NO via deoxygenation with CO(g). This is followed by transfer of the in situ generated nitroso group to organic substrates, which favorably occurs at the flattened Ni(I)-NO site via its nucleophilic reaction. Successful catalytic production of oximes from benzyl halides using NaNO2 is presented with a turnover number of >200 under mild conditions. In a key step of the catalysis, a nickel(I)-â¢NO species effectively activates alkyl halides, which is carefully evaluated by both experimental and theoretical methods. Our nickel catalyst effectively fulfills a dual purpose, namely, deoxygenating NOx anions and catalyzing C-N coupling.
Asunto(s)
Níquel , CatálisisRESUMEN
Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P-O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P-O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4 h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.
Asunto(s)
Tiosemicarbazonas , Zinc , Fosfatasa Alcalina/metabolismo , Hidrólisis , Cinética , Ligandos , Zinc/químicaRESUMEN
High-valent transition metal-hydroxide complexes have been proposed as essential intermediates in biological and synthetic catalytic reactions. In this work, we report the single-crystal X-ray structure and spectroscopic characteristics of a mononuclear nonporphyrinic MnIV-(OH) complex, [MnIV(Me3-TPADP)(OH)(OCH2CH3)]2+ (2), using various physicochemical methods. Likewise, [MnIV(Me3-TPADP)(OH)(OCH2CF3)]2+ (3), which is thermally stable at room temperature, was also synthesized and characterized spectroscopically. The MnIV-(OH) adducts are capable of performing oxidation reactions with external organic substrates such as C-H bond activation, sulfoxidation, and epoxidation. Kinetic studies, involving the Hammett correlation and kinetic isotope effect, and product analyses indicate that 2 and 3 exhibit electrophilic oxidative reactivity toward hydrocarbons. Density functional theory calculations support the assigned electronic structure and show that direct C-H bond activation of the MnIV-(OH) species is indeed possible.
RESUMEN
High-valent iron-imido complexes can perform C-H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV (NTs)(TAML+. )] (1; NTs=tosylimido), and an iron(V)-imido complex [FeV (NTs)(TAML)]- (2). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIV O systems. This is actually in contrast to the known [FeV (O)(TAML)]- species (3), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C-H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new "clustering non-rebound mechanism" is presented for this C-H activation reaction.
Asunto(s)
Hierro , Ligandos , Oxidación-ReducciónRESUMEN
Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head" part of the TAML framework; one has a phenyl group at the "Head" part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions.
RESUMEN
There are mechanistic dichotomies with regard to the formation, electronic structures and reaction mechanisms of metal-oxygen intermediates, since these metal-oxygen species could be composed of different resonance structures or canonical structures of the oxidation states of metals and ligands, which may undergo different reaction pathways. Even the same metal-oxygen intermediates, such as metal-oxo species, may undergo an electron-transfer pathway or a direct hydrogen or oxygen atom transfer pathway depending on the one-electron redox potentials of metal-oxo species and substrates. Electron-transfer pathways are also classified into two mechanisms, such as outer-sphere and inner-sphere pathways. The one-electron redox potentials of metal-oxygen species and substrates are also shifted because of the binding of acids, which can result from either hydrogen bonding or protonation. There are a rebound pathway and a non-rebound pathway following the initial electron transfer or hydrogen atom transfer step to produce hydroxylated products, depending on the one-electron redox potentials of metal-oxo species and substrates. Nucleophilic reactions can be switched to electrophilic pathways, depending on reaction conditions such as reaction temperature. Spin states of metal-oxygen intermediates are also an important factor that controls the redox reactivity of oxidants in oxidation reactions. Here, we review such various mechanistic dichotomies in redox reactions of metal-oxygen intermediates with the emphasis on understanding and controlling the redox reactivity of metal-oxygen intermediates from experimental and theoretical points of view.
RESUMEN
We report for the first time electron-transfer (ET) properties of mononuclear nonheme iron-oxo and -imido complexes with the formal oxidation states of five and six, such as an iron(V)-imido TAML cation radical complex, which is formally an iron(VI)-imido complex [FeV(NTs)(TAML+â¢)] (1; NTs = tosylimido), an iron(V)-imido complex [FeV(NTs)(TAML)]- (2), and an iron(V)-oxo complex [FeV(O)(TAML)]- (3). The one-electron reduction potential (Ered vs SCE) of 1 was determined to be 0.86 V, which is much more positive than that of 2 (0.30 V), but the Ered of 3 is the most positive (1.04 V). The rate constants of ET of 1-3 were analyzed in light of the Marcus theory of adiabatic outer-sphere ET to determine the reorganization energies (λ) of ET reactions with 1-3; the λ of 1 (1.00 eV) is significantly smaller than those of 2 (1.98 eV) and 3 (2.25 eV) because of the ligand-centered ET reduction of 1 as compared to the metal-centered ET reduction of 2 and 3. In oxidation reactions, reactivities of 1-3 toward the nitrene transfer (NT) and oxygen atom transfer (OAT) to thioanisole and its derivatives and the C-H bond activation reactions, such as the hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, were compared experimentally. The differences in the redox reactivity of 1-3 depending on the reaction types, such as NT and OAT versus HAT, were interpreted by performing density functional theory calculations, showing that the ligand-centered reduction seen on ET reactions can switch to metal-centered reduction in NT and HAT.
RESUMEN
Mononuclear nonheme manganese complexes are highly efficient catalysts in the catalytic oxidation of hydrocarbons by hydrogen peroxide in the presence of carboxylic acids. Although high-valent Mn(V)-oxo complexes have been proposed as the active oxidants that afford high regio-, stereo-, and enantioselectivities in the catalytic oxidation reactions, the importance of the spin state (e.g., S = 0 or 1) of the proposed Mn(V)-oxo species is an area that requires further study. In the present study, we have theoretically demonstrated that a mononuclear nonheme Mn(V)-oxo species with an S = 1 ground spin state is the active oxidant that effects the stereo- and enantioselective alkane hydroxylation reaction; it is noted that synthetic octahedral Mn(V)-oxo complexes, characterized spectroscopically and/or structurally, possess an S = 0 spin state and are sluggish oxidants. In an experimental approach, we have investigated the catalytic hydroxylation of alkanes by a mononuclear nonheme Mn(II) complex, [(S-PMB)MnII]2+, and H2O2 in the presence of carboxylic acids; alcohol is the major product with high stereo- and enantioselectivities. A synthetic Mn(IV)-oxo complex, [(S-PMB)MnIV(O)]2+, is inactive in C-H bond activation reactions, ruling out the Mn(IV)-oxo species as an active oxidant. DFT calculations have shown that a Mn(V)-oxo species with an S = 1 spin state, [(S-PMB)MnV(O)(OAc)]2+, is highly reactive and capable of oxygenating the C-H bond via oxygen rebound mechanism; we propose that the triplet spin state of the Mn(V)-oxo species results from the consequence of breaking the equatorial symmetry due to the binding of an equatorial oxygen from an acetate ligand. Thus, the present study reports that, different from the previously reported S = 0 Mn(V)-oxo species, Mn(V)-oxo species with a triplet ground spin state are highly reactive oxidants that are responsible for the regio-, stereo-, and enantioselectivities in the catalytic hydroxylation of alkanes by mononuclear nonheme manganese complexes and terminal oxidants.
RESUMEN
Although nonheme iron(III)-iodosylarene complexes present amazing oxidative efficiency and selectivity, the nature of such complexes and related oxidation mechanism are still unsolved after decades of experimental efforts. Density functional calculations were employed to explore the structure-reactivity relationship of the iron(III)-iodosylbenzene complex, [FeIII(tpena-) (PhIO)]2+ (1), in thioanisole sulfoxidation. Our theoretical work revealed that complex 1 can evolve into two resonance valence-bond electronic structures (a high-valent iron-oxo species and a monomeric PhIO species) in thioanisole sulfoxidation to present different reaction mechanisms (the novel bond-cleavage coupled electron transfer mechanism or the direct oxygen-atom transfer mechanism) as a response to different substrate attack orientations.
RESUMEN
Enzymatic reactions that involve C-H bond activation of alkanes by high-valent iron-oxo species can be explained by the rebound mechanism (RM). Hydroxylation reactions of alkane substrates effected by the reactive compound I (Cpd I) species of cytochrome P450 enzymes are good examples. There was initially little doubt that the rebound paradigm could be carried over in the same form to the arena of synthetic nonheme high-valent iron-oxo or other metal-oxo complexes. However, the active reaction centres of these synthetic systems are not well-caged, in contrast to the active sites of enzymes; therefore, the relative importance of the radical dissociation pathway can become prominent. Indeed, accumulating experimental and theoretical evidence shows that introduction of the non-rebound mechanism (non-RM) is necessary to rationalise the different reactivity patterns observed for synthetic nonheme complexes. In this tutorial review, we discuss several specific examples involving the non-RM while making frequent comparisons to the RM, mainly from the perspective of computational chemistry. We also provide a technical guide to DFT calculations of RM and non-RM and to the interpretations of computational outcomes.
Asunto(s)
Complejos de Coordinación/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Oxígeno/metabolismo , Alcanos/química , Alcanos/metabolismo , Complejos de Coordinación/química , Sistema Enzimático del Citocromo P-450/química , Hidroxilación , Oxígeno/química , Teoría CuánticaRESUMEN
We report the oxidation of cyclic olefins, such as cyclohexene, cyclohexene-d10, and cyclooctene, by mononuclear nonheme manganese(IV)-oxo (Mn(IV)O) and triflic acid (HOTf)-bound Mn(IV)O complexes. In the oxidation of cyclohexene, the Mn(IV)O complexes prefer the C-H bond activation to the CâC double bond epoxidation, whereas the CâC double bond epoxidation becomes a preferred reaction pathway in the cyclohexene oxidation by HOTf-bound Mn(IV)O complexes. In contrast, the oxidation of cyclohexene-d10 and cyclooctene by the Mn(IV)O complexes occurs predominantly via the CâC double bond epoxidation. This conclusion is drawn from the product analysis and kinetic studies of the olefin oxidation reactions, such as the epoxide versus allylic oxidation products, the formation of Mn(II) versus Mn(III) products, and the kinetic analyses. Overall, the experimental results suggest that the energy barrier of the CâC double bond epoxidation is very close to that of the allylic C-H bond activation in the oxidation of cyclic olefins by high-valent metal-oxo complexes. Thus, the preference of the reaction pathways is subject to changes upon small manipulation of the reaction environments, such as the supporting ligands and metal ions in metal-oxo species, the presence of HOTf (i.e., HOTf-bound Mn(IV)O species), and the allylic C-H(D) bond dissociation energies of olefins. This is confirmed by DFT calculations in the oxidation of cyclohexene and cyclooctene, which show multiple pathways with similar rate-limiting energy barriers and depending on the allylic C-H bond dissociation energies. In addition, the possibility of excited state reactivity in the current system is confirmed for epoxidation reactions.
RESUMEN
A mononuclear non-heme manganese(V)-oxo complex, [Mn(V)(O)(TAML)](-) (1), was synthesized by activating dioxygen in the presence of olefins with weak allylic C-H bonds and characterized structurally and spectroscopically. In mechanistic studies, the formation rate of 1 was found to depend on the allylic C-H bond dissociation energies (BDEs) of olefins, and a kinetic isotope effect (KIE) value of 16 was obtained in the reactions of cyclohexene and cyclohexene-d10. These results suggest that a hydrogen atom abstraction from the allylic C-H bonds of olefins by a putative Mn(IV)-superoxo species, which is formed by binding O2 by a high-spin (S = 2) [Mn(III)(TAML)](-) complex, is the rate-determining step. A Mn(V)-oxo complex binding Sc(3+) ion, [Mn(V)(O)(TAML)](-)-(Sc(3+)) (2), was also synthesized in the reaction of 1 with Sc(3+) ion and then characterized using various spectroscopic techniques. The binding site of the Sc(3+) ion was proposed to be the TAML ligand, not the Mn-O moiety, probably due to the low basicity of the oxo group compared to the basicity of the amide carbonyl group in the TAML ligand. Reactivity studies of the Mn(V)-oxo intermediates, 1 and 2, in oxygen atom transfer and electron-transfer reactions revealed that the binding of Sc(3+) ion at the TAML ligand of Mn(V)-oxo enhanced its oxidizing power with a positively shifted one-electron reduction potential (ΔEred = 0.70 V). This study reports the first example of tuning the second coordination sphere of high-valent metal-oxo species by binding a redox-inactive metal ion at the supporting ligand site, thereby modulating their electron-transfer properties as well as their reactivities in oxidation reactions.
Asunto(s)
Manganeso/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Oxígeno/química , Técnicas de Química Sintética , Transporte de ElectrónRESUMEN
Reactions of nonheme Fe(III) -superoxo and Mn(IV) -peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)Fe(III) (O2 )](2-) and [(TAML)Mn(IV) (O2 )](2-) , with nitric oxide (NO) afford the Fe(III) -NO3 complex [(TAML)Fe(III) (NO3 )](2-) and the Mn(V) -oxo complex [(TAML)Mn(V) (O)](-) plus NO2 (-) , respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that M(III) -peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)Fe(III) (O2 )](2-) and [(TAML)Mn(IV) (O2 )](2-) with NO, are converted into M(IV) (O) and (.) NO2 species through O-O bond homolysis of the peroxynitrite ligand. Then, a rebound of Fe(IV) (O) with (.) NO2 affords [(TAML)Fe(III) (NO3 )](2-) , whereas electron transfer from Mn(IV) (O) to (.) NO2 yields [(TAML)Mn(V) (O)](-) plus NO2 (-) .
Asunto(s)
Complejos de Coordinación/química , Hierro/química , Manganeso/química , Óxido Nítrico/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Complejos de Coordinación/metabolismo , Transporte de Electrón , Iones/química , Ligandos , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxígeno/química , Espectrofotometría UltravioletaRESUMEN
Mononuclear nonheme high-spin (S=2) iron(IV)-oxo species have been identified as the key intermediates responsible for the C-H bond activation of organic substrates in nonheme iron enzymatic reactions. Herein we report that the C-H bond activation of hydrocarbons by a synthetic mononuclear nonheme high-spin (S=2) iron(IV)-oxo complex occurs through an oxygen non-rebound mechanism, as previously demonstrated in the C-H bond activation by nonheme intermediate (S=1) iron(IV)-oxo complexes. We also report that C-H bond activation is preferred over C=C epoxidation in the oxidation of cyclohexene by the nonheme high-spin (HS) and intermediate-spin (IS) iron(IV)-oxo complexes, whereas the C=C double bond epoxidation becomes a preferred pathway in the oxidation of deuterated cyclohexene by the nonheme HS and IS iron(IV)-oxo complexes. In the epoxidation of styrene derivatives, the HS and IS iron(IV) oxo complexes are found to have similar electrophilic characters.