Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 7979-7986, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829309

RESUMEN

Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here we investigate the impact of dimensionality of epitaxially grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1500% improvement of the coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications.

2.
Nano Lett ; 22(2): 733-739, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35025519

RESUMEN

Inspired by information processing in biological systems, sensor-combined edge-computing systems attract attention requesting artificial sensory neurons as essential ingredients. Here, we introduce a simple and versatile structure of artificial sensory neurons based on a novel three-terminal Ovonic threshold switch (3T-OTS), which features an electrically controllable threshold voltage (Vth). Combined with a sensor driving an output voltage, this 3T-OTS generates spikes with a frequency depending on an external stimulus. As a proof of concept, we have built an artificial retinal ganglion cell (RGC) by combining a 3T-OTS and a photodiode. Furthermore, this artificial RGC is combined with the reservoir-computing technique to perform a classification of chest X-ray images for normal, viral pneumonia, and COVID-19 infections, releasing the recognition accuracy of about 86.5%. These results indicate that the 3T-OTS is highly promising for applications in neuromorphic sensory systems, providing a building block for energy-efficient in-sensor computing devices.


Asunto(s)
COVID-19 , Redes Neurales de la Computación , Humanos , SARS-CoV-2 , Células Receptoras Sensoriales
3.
Phys Rev Lett ; 124(2): 026401, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-32004053

RESUMEN

Artificial crystals synthesized by atomic-scale epitaxy provide the ability to control the dimensions of the quantum phases and associated phase transitions via precise thickness modulation. In particular, the reduction in dimensionality via quantized control of atomic layers is a powerful approach to revealing hidden electronic and magnetic phases. Here, we demonstrate a dimensionality-controlled and induced metal-insulator transition (MIT) in atomically designed superlattices by synthesizing a genuine two-dimensional (2D) SrRuO_{3} crystal with highly suppressed charge transfer. The tendency to ferromagnetically align the spins in an SrRuO_{3} layer diminishes in 2D as the interlayer exchange interaction vanishes, accompanying the 2D localization of electrons. Furthermore, electronic and magnetic instabilities in the two SrRuO_{3} unit cell layers induce a thermally driven MIT along with a metamagnetic transition.

4.
Nano Converg ; 10(1): 2, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36625963

RESUMEN

The interplay between ferromagnetism and the non-trivial topology has unveiled intriguing phases in the transport of charges and spins. For example, it is consistently observed the so-called topological Hall effect (THE) featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a topological insulator (TI). The origin of the hump structure is still controversial between the topological Hall effect model and the multi-component anomalous Hall effect (AHE) model. In this work, we have investigated a heterostructure consisting of BixSb2-xTeySe3-y (BSTS) and Cr2Te3 (CT), which are well-known TI and two-dimensional FM, respectively. By using the so-called "minor-loop measurement", we have found that the hump structure observed in the CT/BSTS is more likely to originate from two AHE channels. Moreover, by analyzing the scaling behavior of each amplitude of two AHE with the longitudinal resistivities of CT and BSTS, we have found that one AHE is attributed to the extrinsic contribution of CT while the other is due to the intrinsic contribution of BSTS. It implies that the proximity-induced ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE, resulting in the hump structure explained by the two AHE model.

5.
Adv Mater ; 34(24): e2201608, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35436369

RESUMEN

Mechanical properties of biological systems provide useful information about the biochemical status of cells and tissues. Here, an artificial tactile neuron enabling spiking representation of stiffness and spiking neural network (SNN)-based learning for disease diagnosis is reported. An artificial spiking tactile neuron based on an ovonic threshold switch serving as an artificial soma and a piezoresistive sensor as an artificial mechanoreceptor is developed and shown to encode the elastic stiffness of pressed materials into spike frequency evolution patterns. SNN-based learning of ultrasound elastography images abstracted by spike frequency evolution rate enables the classification of malignancy status of breast tumors with a recognition accuracy up to 95.8%. The stiffness-encoding artificial tactile neuron and learning of spiking-represented stiffness patterns hold a great promise for the identification and classification of tumors for disease diagnosis and robot-assisted surgery with low power consumption, low latency, and yet high accuracy.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Neuronas/fisiología , Tacto
6.
Sci Rep ; 8(1): 5739, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636543

RESUMEN

Several oxide materials have attracted much interest for the application in spintronic devices due to unusual properties originating from the strongly correlated orbital and spin degrees of freedom. One missing part in oxide spintronics is a good spin channel featured by strong spin-orbit coupling (SOC) which enables an efficient control of the electron's spin. We have systematically investigated the dependence of the SOC strength of Sr(Nb x Ti1-x)O3 thin films on Nb concentration (nNb = 2~20 at. %) as a deeper exploration of a recent finding of the strong SOC in a heavily Nb-doped SrTiO3 (Sr(Nb0.2Ti0.8)O3) epitaxial film. Apart from a finding of a proportionality of the SOC to nNb, we have observed an intriguing temperature dependence of the SOC strength and the anisotropic magnetoresistance (MR) in the intermediate nNb region. These phenomena are associated with the temperature dependence of Landé g-factor and the change of the band structure, which is consistent with the result of density functional theory (DFT) calculation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA