Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 80(4): 592-606.e8, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33159855

RESUMEN

Despite its outstanding clinical success, immune checkpoint blockade remains ineffective in many patients. Accordingly, combination therapy capable of achieving greater antitumor immunity is urgently required. Here, we report that limiting glutamine metabolism in cancer cells bolsters the effectiveness of anti-programmed death ligand-1 (PD-L1) antibody. Inhibition of glutamine utilization increased PD-L1 levels in cancer cells, thereby inactivating co-cultured T cells. Under glutamine-limited conditions, reduced cellular GSH levels caused an upregulation of PD-L1 expression by impairing SERCA activity, which activates the calcium/NF-κB signaling cascade. Consequently, in tumors grown in immunocompetent mice, inhibition of glutamine metabolism decreased the antitumor activity of T cells. In combination with anti-PD-L1, however, glutamine depletion strongly promoted the antitumor efficacy of T cells in vitro and in vivo due to simultaneous increases in Fas/CD95 levels. Our results demonstrate the relevance of cancer glutamine metabolism to antitumor immunity and suggest that co-targeting of glutamine metabolism and PD-L1 represents a promising therapeutic approach.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Neoplasias/inmunología , Neoplasias/prevención & control , Linfocitos T/inmunología , Anciano , Animales , Apoptosis , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 120(20): e2219644120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155882

RESUMEN

Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.


Asunto(s)
Pancreatitis Crónica , Canal Aniónico 1 Dependiente del Voltaje , Animales , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
3.
Plant J ; 117(3): 747-765, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926922

RESUMEN

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Triazoles , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cell Tissue Res ; 395(1): 53-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985496

RESUMEN

Glomerular epithelial protein-1 (Glepp1), a R3 subtype family of receptor-type protein tyrosine phosphatases, plays important role in the activation of Src family kinases and regulates cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, we firstly examined the functional evaluation of Glepp1 in tooth development and morphogenesis. The precise expression level and developmental function of Glepp1 were examined by RT-qPCR, in situ hybridization, and loss and gain of functional study using a range of in vitro organ cultivation methods. Expression of Glepp1 was detected in the developing tooth germs in cap and bell stage of tooth development. Knocking down Glepp1 at E13 for 2 days showed the altered expression levels of tooth development-related signaling molecules, including Bmps, Dspp, Fgf4, Lef1, and Shh. Moreover, transient knock down of Glepp1 revealed alterations in cellular physiology, examined by the localization patterns of Ki67 and E-cadherin. Similarly, knocking down of Glepp1 showed disrupted enamel rod and interrod formation in 3-week renal transplanted teeth. In addition, due to attrition of odontoblastic layers, the expression signals of Dspp and the localization of NESTIN were almost not detected after knock down of Glepp1; however, their expressions were increased after Glepp1 overexpression. Thus, our results suggested that Glepp1 plays modulating roles during odontogenesis by regulating the expression levels of signaling molecules and cellular events to achieve the proper structural formation of hard tissue matrices in mice molar development.


Asunto(s)
Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Diente , Animales , Ratones , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Odontogénesis , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Diente/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853949

RESUMEN

Fibroblast growth factor 23 (FGF23), a hormone generally derived from bone, is important in phosphate and vitamin D homeostasis. In acute kidney injury (AKI) patients, high-circulating FGF23 levels are associated with disease progression and mortality. However, the organ and cell type of FGF23 production in AKI and the molecular mechanism of its excessive production are still unidentified. For insight, we investigated folic acid (FA)-induced AKI in mice. Interestingly, simultaneous with FGF23, orphan nuclear receptor ERR-γ expression is increased in the liver of FA-treated mice, and ectopic overexpression of ERR-γ was sufficient to induce hepatic FGF23 production. In patients and in mice, AKI is accompanied by up-regulated systemic IL-6, which was previously identified as an upstream regulator of ERR-γ expression in the liver. Administration of IL-6 neutralizing antibody to FA-treated mice or of recombinant IL-6 to healthy mice confirms IL-6 as an upstream regulator of hepatic ERR-γ-mediated FGF23 production. A significant (P < 0.001) interconnection between high IL-6 and FGF23 levels as a predictor of AKI in patients that underwent cardiac surgery was also found, suggesting the clinical relevance of the finding. Finally, liver-specific depletion of ERR-γ or treatment with an inverse ERR-γ agonist decreased hepatic FGF23 expression and plasma FGF23 levels in mice with FA-induced AKI. Thus, inverse agonist of ERR-γ may represent a therapeutic strategy to reduce adverse plasma FGF23 levels in AKI.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Receptores de Estrógenos/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos/genética , Ácido Fólico/efectos adversos , Ácido Fólico/farmacología , Interleucina-6/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/metabolismo , Receptores de Estrógenos/genética , Activación Transcripcional
6.
Gastroenterology ; 163(1): 239-256, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35461826

RESUMEN

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Asunto(s)
Páncreas Exocrino , Pancreatitis Crónica , Células Acinares/patología , Animales , Estrógenos/metabolismo , Humanos , Ratones , Ratones Noqueados , Páncreas/patología , Páncreas Exocrino/metabolismo , Pancreatitis Crónica/patología
7.
Biochem Biophys Res Commun ; 666: 21-28, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37167720

RESUMEN

This study aimed to develop a new symmetric-end antimicrobial peptide (AMP) with cell selectivity, antibiofilm, and anti-inflammatory activities. Two symmetric-end AMPs, Lf6-pP and Lf6-GG, were designed based on the sequence RRWQWRzzRWQWRR, which contains two symmetric repeat sequences connected by a ß-turn-promoting sequence (zz) that can be a rigid turn by D-Pro-Pro (pP) or a flexible turn by Gly-Gly (GG). Both Lf6-pP and Lf6-GG exhibited potent antibacterial activity without causing hemolysis, but Lf6-pP exhibited better cell selectivity, likely due to the more significant impact of the rigid pP turn. Compared to Lf6-GG, Lf6-pP demonstrated approximately three times higher antimicrobial activity against drug-resistant bacteria, had a low incidence of drug resistance, and maintained its activity in the presence of physiological salts and human serum. Additionally, Lf6-pP was more effective than Lf6-GG in inhibiting biofilm formation and eradicating mature biofilms. The BODIPY-cadaverine assay indicated that the potent anti-inflammatory activity of Lf6-pP may be attributed to its direct interaction with LPS, resulting in decreased TNF-α and IL-6 levels in LPS-stimulated macrophages. Mechanistic studies, including membrane depolarization, outer/inner membrane permeation, and membrane integrity change, demonstrated that Lf6-pP exerts its antibacterial action through an intracellular-target mechanism. Overall, we propose that Lf6-pP has potential as a novel antibacterial, antibiofilm, and anti-inflammatory agent against drug-resistant bacterial infections.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Humanos , Péptidos Catiónicos Antimicrobianos/farmacología , Lipopolisacáridos/farmacología , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
8.
J Invertebr Pathol ; 201: 108010, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865158

RESUMEN

Toll-like receptors (TLRs), an ancient and well-conserved group of pattern recognition receptors (PRRs), recognize conserved pathogen-associated molecular patterns. TLRs consist of three domains: the extracellular N-terminal domain, containing one or more leucine-rich repeats (LRRs), responsible for the recognizing and binding of antigens; the type-I transmembrane domain; and the intracellular domain known as the Toll/Interleukin-1 receptor (TIR) domain required for the downstream signaling pathway. We identified six new full-length complementary DNA (cDNA) sequences, Ean-TLR1/2/3/4/5/6. The deduced amino acid sequences indicate that Ean-TLRs consist of one signal peptide, one LRR N-terminal domain (Ean-TLR4/5), varying numbers of LRRs, one (Ean-TLR1/2/3/4/5) or two (Ean-TLR6) LRR C-terminal domains, one type-I transmembrane domain, and a TIR domain. In addition, a TIR domain alignment revealed that three conserved motifs, designated as Box 1, Box 2, and Box 3, contain essential amino acid residues for downstream signaling activity. Phylogenetic analysis of earthworm TLRs generated two separate evolutionary branches representing single (sccTLR) and multiple (mccTLR) cysteine cluster TLRs. Ean-TLR1/2/3/4 (sccTLR type) and Ean-TLR6 (mccTLR type) were clustered with corresponding types of previously reported earthworm TLRs as well as TLRs from Clitellata and Polychaete. As PRRs, earthworm TLRs should be capable of sensing a diverse range of pathogens. Except for Ean-TLR3, which was not responsive to any bacteria, earthworm TLR expression was significantly induced by Gram-positive but not Gram-negative bacteria. Moreover, it is likely that earthworms can differentiate between different species of Gram-positive bacteria via their TLR responses. The ligand specificity of earthworm TLRs suggests that their pathogenic ligand recognition is likely to be as specific and diverse as the mammalian TLR pathogen-sensing system.


Asunto(s)
Oligoquetos , Animales , Filogenia , Receptor Toll-Like 1/genética , Ligandos , Receptor Toll-Like 6/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Receptores de Reconocimiento de Patrones/genética , Bacterias/metabolismo , Inmunidad Innata/genética , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613556

RESUMEN

The orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is a constitutively active transcription factor involved in mitochondrial metabolism and energy homeostasis. GSK5182, a specific inverse agonist of ERRγ that inhibits transcriptional activity, induces a conformational change in ERRγ, resulting in a loss of coactivator binding. However, the molecular mechanism underlying the stabilization of the ERRγ protein by its inverse agonist remains largely unknown. In this study, we found that GSK5182 inhibited ubiquitination of ERRγ, thereby stabilizing the ERRγ protein, using cell-based assays and confocal image analysis. Y326 of ERRγ was essential for stabilization by GSK5182, as ligand-induced stabilization of ERRγ was not observed with the ERRγ-Y326A mutant. GSK5182 suppressed ubiquitination of ERRγ by the E3 ligase Parkin and subsequent degradation. The inhibitory activity of GSK5182 was strong even when the ERRγ protein level was elevated, as ERRγ bound to GSK5182 recruited a corepressor, small heterodimer partner-interacting leucine zipper (SMILE), through the activation function 2 (AF-2) domain, without alteration of the nuclear localization or DNA-binding ability of ERRγ. In addition, the AF-2 domain of ERRγ was critical for the regulation of protein stability. Mutants in the AF-2 domain were present at higher levels than the wild type in the absence of GSK5182. Furthermore, the ERRγ-L449A/L451A mutant was no longer susceptible to GSK5182. Thus, the AF-2 domain of ERRγ is responsible for the regulation of transcriptional activity and protein stability by GSK5182. These findings suggest that GSK5182 regulates ERRγ by a unique molecular mechanism, increasing the inactive form of ERRγ via inhibition of ubiquitination.


Asunto(s)
Agonismo Inverso de Drogas , Receptores Nucleares Huérfanos , Furilfuramida , Ubiquitinación , Estabilidad Proteica
10.
EMBO Rep ; 20(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30988000

RESUMEN

Oncogenic signals contribute to enhanced glycolysis and mTORC1 activity, leading to rapid cell proliferation in cancer. Regulation of glycolysis and mTORC1 by PI3K/Akt signaling is well established, but how KRAS-induced MEK signaling regulates these pathways remains poorly understood. Here, we report a role for MEK-driven lactate production in mTORC1 activation in KRAS-activated cells. KRAS/MEK-induced upregulation of the chicken ovalbumin upstream promoter transcriptional factor II (COUP-TFII) increases the expression of lactate dehydrogenase A (LDHA), resulting in lactate production and mTORC1 activation. Further, lactate inhibits the interaction of TSC2 and Rheb, leading to the cellular activation of mTORC1 irrespective of growth factor stimulation. These findings suggest that COUP-TFII is a novel oncogenic mediator, connecting KRAS signaling and glycolysis, and leading to mTORC1 activation and cellular growth.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Ácido Láctico/biosíntesis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Factor de Transcripción COUP II/genética , Línea Celular Tumoral , Expresión Génica , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Modelos Biológicos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
11.
Arch Toxicol ; 95(9): 3071-3084, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34191077

RESUMEN

Acute liver injury results from the complex interactions of various pathological processes. The TGF-ß superfamily plays a crucial role in orchestrating fibrogenic response. In contrast to TGF-ß1, a role of TGF-ß2 in hepatic fibrogenic response has not been fully investigated. In this study, we showed that TGF-ß2 gene expression and secretion are induced in the liver of CCl4 (1 ml/kg)-treated WT mice. Studies with hepatocyte specific ERRγ knockout mice or treatment with an ERRγ-specific inverse agonist, GSK5182 (40 mg/kg), indicated that CCl4-induced hepatic TGF-ß2 production is ERRγ dependent. Moreover, IL6 was found as upstream signal to induce hepatic ERRγ and TGF-ß2 gene expression in CCl4-mediated acute toxicity model. Over-expression of ERRγ was sufficient to induce hepatic TGF-ß2 expression, whereas ERRγ depletion markedly reduces IL6-induced TGF-ß2 gene expression and secretion in vitro and in vivo. Promoter assays showed that ERRγ directly binds to an ERR response element in the TGF-ß2 promoter to induce TGF-ß2 transcription. Finally, GSK5182 diminished CCl4-induced fibrogenic response through inhibition of ERRγ-mediated TGF-ß2 production. Taken together, these results firstly demonstrate that ERRγ can regulate the TGF-ß2-mediated fibrogenic response in a mouse model of CC14-induced acute liver injury.


Asunto(s)
Hepatopatías/fisiopatología , Receptores de Estrógenos/genética , Tamoxifeno/análogos & derivados , Factor de Crecimiento Transformador beta2/genética , Animales , Tetracloruro de Carbono , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hepatopatías/tratamiento farmacológico , Hepatopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Estrógenos/efectos de los fármacos , Tamoxifeno/farmacología
12.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499100

RESUMEN

The silencing of thyroid-related genes presents difficulties in radioiodine therapy for anaplastic thyroid cancers (ATCs). Tunicamycin (TM), an N-linked glycosylation inhibitor, is an anticancer drug. Herein, we investigated TM-induced restoration of responsiveness to radioiodine therapy in radioiodine refractory ATCs. 125I uptake increased in TM-treated ATC cell lines, including BHT101 and CAL62, which was inhibited by KClO4, a sodium-iodide symporter (NIS) inhibitor. TM upregulated the mRNA expression of iodide-handling genes and the protein expression of NIS. TM blocked pERK1/2 phosphorylation in both cell lines, but AKT (protein kinase B) phosphorylation was only observed in CAL62 cells. The downregulation of glucose transporter 1 protein was confirmed in TM-treated cells, with a significant reduction in 18F-fluorodeoxyglucose (FDG) uptake. A significant reduction in colony-forming ability and marked tumor growth inhibition were observed in the combination group. TM was revealed to possess a novel function as a redifferentiation inducer in ATC as it induces the restoration of iodide-handling gene expression and radioiodine avidity, thereby facilitating effective radioiodine therapy.


Asunto(s)
Antineoplásicos/farmacología , Radioisótopos de Yodo/uso terapéutico , Carcinoma Anaplásico de Tiroides/radioterapia , Neoplasias de la Tiroides/radioterapia , Tunicamicina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Fluorodesoxiglucosa F18/metabolismo , Silenciador del Gen , Glicosilación , Humanos , Yoduros/química , Radioisótopos de Yodo/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Simportadores/metabolismo , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico
13.
J Neurosci ; 39(50): 9989-10001, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31704784

RESUMEN

Hearing loss is the biggest risk factor for tinnitus, and hearing-loss-related pathological changes in the auditory pathway have been hypothesized as the mechanism underlying tinnitus. However, due to the comorbidity of tinnitus and hearing loss, it has been difficult to differentiate between neural correlates of tinnitus and consequences of hearing loss. In this study, we dissociated tinnitus and hearing loss in FVB mice, which exhibit robust resistance to tinnitus following monaural noise-induced hearing loss. Furthermore, knock-down of glutamate decarboxylase 65 (GAD65) expression in auditory cortex (AI) by RNA interference gave rise to tinnitus in normal-hearing FVB mice. We found that tinnitus was significantly correlated with downregulation of GAD65 in the AI. By contrast, cortical map distortions, which have been hypothesized as a mechanism underlying tinnitus, were correlated with hearing loss but not tinnitus. Our findings suggest new strategies for the rehabilitation of tinnitus and other phantom sensation, such as phantom pain.SIGNIFICANCE STATEMENT Hearing loss is the biggest risk factor for tinnitus in humans. Most animal models of tinnitus also exhibit comorbid hearing loss, making it difficult to dissociate the mechanisms underlying tinnitus from mere consequences of hearing loss. Here we show that, although both C57BL/6 and FVB mice exhibited similar noise-induced hearing threshold increase, only C57BL/6, but not FVB, mice developed tinnitus following noise exposure. Although both strains showed frequency map reorganization following noise-induced hearing loss, only C57BL/6 mice had reduced glutamate decarboxylase 65 (GAD65) expression in the auditory cortex (AI). Knocking down GAD65 expression in the AI resulted in tinnitus in normal-hearing FVB mice. Our results suggest that reduced inhibitory neuronal function, but not sensory map reorganization, underlies noise-induced tinnitus.


Asunto(s)
Corteza Auditiva/metabolismo , Vías Auditivas/metabolismo , Regulación hacia Abajo , Glutamato Descarboxilasa/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Plasticidad Neuronal/fisiología , Acúfeno/metabolismo , Animales , Corteza Auditiva/fisiopatología , Vías Auditivas/fisiopatología , Percepción Auditiva/fisiología , Mapeo Encefálico , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Ratones , Acúfeno/fisiopatología
14.
Biochem Biophys Res Commun ; 521(1): 15-18, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31640857

RESUMEN

To investigate whether earthworm cellulases contribute to the innate immune system, the responsiveness of cellulase activity and mRNA expression to bacterial challenge was examined by zymography and RNA sequencing. A zymographic analysis revealed that the activity levels of earthworm cellulases were upregulated in response to either a bacterial (Bacillus subtilis or Escherichia coli) or LPS challenge. After the challenge, significant increases in cellulase 1 and cellulase 2 activity levels were observed within 8-16 and 16-24 h, respectively. In the coelomic fluid, both activities were significantly upregulated at 8 h post-injection with B. subtilis. Based on RNA sequencing, cellulase-related mRNAs encoding beta-1,4-endoglucanases were upregulated by 3-fold within 6 h after B. subtilis injection. Our results clearly demonstrated that earthworm cellulases are upregulated by bacterial challenge at the mRNA and protein levels. These results support the view that earthworm cellulases act as inducible humoral effectors of innate immunity against bacterial infection.


Asunto(s)
Bacillus subtilis/metabolismo , Celulasas/inmunología , Escherichia coli/metabolismo , Inmunidad Innata/inmunología , Oligoquetos/enzimología , ARN Mensajero/genética , Animales , Secuencia de Bases , Celulasas/metabolismo , Oligoquetos/metabolismo , Oligoquetos/microbiología , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
15.
Arch Toxicol ; 94(2): 427-438, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31912162

RESUMEN

Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic cannabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase (DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG levels. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and DAGLß, and increased 2-AG levels in the liver (10 mg/kg) and hepatocytes (10 µM) of wild-type (WT) mice. ERRγ overexpression upregulated DAGLα and DAGLß expressions and increased 2-AG levels, whereas ERRγ knockdown abolished ACEA-induced DAGLα, DAGLß, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated DAGLα and DAGLß transcription by binding to the ERR response element in the DAGLα and DAGLß promoters. Chronic alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, DAGLß, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout mice or in those treated with the ERRγ inverse agonist GSK5182 (40 mg/kg in mice and 10 µM in vitro). Taken together, these results indicate that suppression of alcohol-induced DAGLα and DAGLß gene expressions and 2-AG levels by an ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Ácidos Araquidónicos/farmacología , Endocannabinoides/biosíntesis , Etanol/toxicidad , Glicéridos/biosíntesis , Lipoproteína Lipasa/genética , Receptores de Estrógenos/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipoproteína Lipasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptores de Estrógenos/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología
16.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225111

RESUMEN

Echiura is one of the most intriguing major subgroups of phylum Annelida because, unlike most other annelids, echiuran adults lack metameric body segmentation. Urechis unicinctus lives in U-shape burrows of soft sediments. Little is known about the molecular mechanisms underlying the development of U. unicinctus. Herein, we overviewed the developmental process from zygote to juvenile U. unicinctus using immunohistochemistry and F-actin staining for the nervous and muscular systems, respectively. Through F-actin staining, we found that muscle fibers began to form in the trochophore phase and that muscles for feeding were produced first. Subsequently, in the segmentation larval stage, the transversal muscle was formed in the shape of a ring in an anterior-to-posterior direction with segment formation, as well as a ventromedian muscle for the formation of a ventral nerve cord. After that, many muscle fibers were produced along the entire body and formed the worm-shaped larva. Finally, we investigated the spatiotemporal expression of Uun_st-mhc, Uun_troponin I, Uun_calponin, and Uun_twist genes found in U. unicinctus. During embryonic development, the striated and smooth muscle genes were co-expressed in the same region. However, the adult body wall muscles showed differential gene expression of each muscle layer. The results of this study will provide the basis for the understanding of muscle differentiation in Echiura.


Asunto(s)
Anélidos/crecimiento & desarrollo , Desarrollo de Músculos , Actinas/genética , Actinas/metabolismo , Animales , Músculos/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Transcriptoma
17.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998264

RESUMEN

Bone morphogenetic protein 6 (BMP6) is a multifunctional growth factor involved in organ development and homeostasis. BMP6 controls expression of the liver hormone, hepcidin, and thereby plays a crucial role in regulating iron homeostasis. BMP6 gene transcriptional regulation in liver is largely unknown, but would be of great help to externally modulate iron load in pathologic conditions. Here, we describe a detailed molecular mechanism of hepatic BMP6 gene expression by an orphan nuclear receptor, estrogen-related receptor γ (ERRγ), in response to the pro-inflammatory cytokine interleukin 6 (IL-6). Recombinant IL-6 treatment increases hepatic ERRγ and BMP6 expression. Overexpression of ERRγ is sufficient to increase BMP6 gene expression in hepatocytes, suggesting that IL-6 is upstream of ERRγ. In line, knock-down of ERRγ in cell lines or a hepatocyte specific knock-out of ERRγ in mice significantly decreases IL-6 mediated BMP6 expression. Promoter studies show that ERRγ directly binds to the ERR response element (ERRE) in the mouse BMP6 gene promoter and positively regulates BMP6 gene transcription in IL-6 treatment conditions, which is further confirmed by ERRE mutated mBMP6-luciferase reporter assays. Finally, an inverse agonist of ERRγ, GSK5182, markedly inhibits IL-6 induced hepatic BMP6 expression in vitro and in vivo. Taken together, these results reveal a novel molecular mechanism on ERRγ mediated transcriptional regulation of hepatic BMP6 gene expression in response to IL-6.


Asunto(s)
Proteína Morfogenética Ósea 6/genética , Interleucina-6/genética , Hígado/metabolismo , Receptores de Estrógenos/genética , Elementos de Respuesta , Activación Transcripcional , Animales , Sitios de Unión , Proteína Morfogenética Ósea 6/metabolismo , Genes Reporteros , Células Hep G2 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacología , Hierro/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Transducción de Señal , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología
18.
Molecules ; 25(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093002

RESUMEN

The filamentous fungal pathogen Fusarium sp. causes several crop diseases. Some Fusarium sp. are endophytes that produce diverse valuable bioactive secondary metabolites. Here, extensive chemical investigation of the endophytic fungus, Fusarium sp. QF001, isolated from the inner rotten part of old roots of Scutellariae baicalensis resulted in the isolation of two new photosensitive geometrical isomers of lucilactaene (compounds 2 and 3) along with lucilactaene (6) and six other known compounds (fusarubin (1), (+)-solaniol (4), javanicin (5), 9-desmethylherbarine (7), NG391 (8) and NG393 (9)). Newly isolated isomers and lucilactaene were unstable under light at room temperature and tended to be a mixture in equilibrium state when exposed to a polar protic solvent during reversed phase chromatography. Normal phase chromatography under dim light conditions with an aprotic mobile phase led to the successful isolation of the relatively unstable isomers 2 and 3. Their structures were elucidated as 8(Z)-lucilactaene (2) and 4(Z)-lucilactaene (3) based on spectroscopic data. The absolute configuration of 4 was speculated to be R by computer-assisted specific rotation analysis. The isolated compounds could inhibit NO production and suppress pro-inflammatory cytokines expression in LPS-stimulated macrophage cells. These properties of the isolated compounds indicate their potential use as anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Endófitos/química , Furanos , Fusarium/química , Raíces de Plantas/microbiología , Pirroles , Scutellaria baicalensis/microbiología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Furanos/química , Furanos/aislamiento & purificación , Furanos/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Pirroles/química , Pirroles/aislamiento & purificación , Pirroles/farmacología , Células RAW 264.7 , Metabolismo Secundario
19.
Biomed Microdevices ; 21(4): 86, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31451957

RESUMEN

In this study, a novel film-based immunochromatographic microfluidic device (IMD) has been developed for malaria diagnosis. A microfluidic channel was patterned on a polyethylene terephthalate (PET) double-sided adhesive film using a plotting cutter and was assembled with a polycarbonate (PC) film. The PC film used for the probe immobilization layer was activated using oxygen plasma treatment to modify the film surface with avidin-biotin linker to immobilize a capture antibody. A fluorescent labeled Pan type mAb conjugate was prepared for signal indicator after undergoing a sandwich enzyme-linked immunosorbent assay (ELISA). Target antigens include Plasmodium falciparum (P. falciparum) lactate dehydrogenase (LDH) and Plasmodium vivax (P. vivax) LDH which were injected into the sample inlet. Target antigens combined with the conjugate and then flowed to the detection chamber where two test dots and a control dot (Ctrl) exist. In the presence of P. falciparum LDH, three detection dots including test dot 1 (T1), test dot 2 (T2) and Ctrl revealed fluorescence signals where P. falciparum mAb, Pan type pLDH mAb and goat anti-mouse IgG were immobilized, respectively. When P. vivax LDH was present, T2 and Ctrl dots showed fluorescence signals while no signal was detected with the negative control. P. falciparum LDH and P. vivax LDH were successfully detected on the IMD with a detection limit of 50 ng/mL and 100 ng/mL, respectively. The IMD provides a point-of-care diagnosis platform which is able to analyze pathogenic bacteria and viruses that can be applied in the field of clinical diagnosis and food safety testing.


Asunto(s)
Cromatografía de Afinidad/instrumentación , Dispositivos Laboratorio en un Chip , Malaria/diagnóstico , Especificidad de Anticuerpos , Ensayo de Inmunoadsorción Enzimática , L-Lactato Deshidrogenasa/metabolismo , Límite de Detección , Plasmodium falciparum/enzimología , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Plasmodium vivax/enzimología , Plasmodium vivax/inmunología , Plasmodium vivax/fisiología
20.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23254933

RESUMEN

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Asunto(s)
Tipificación del Cuerpo/genética , Evolución Molecular , Genoma/genética , Sanguijuelas/genética , Moluscos/genética , Filogenia , Poliquetos/genética , Animales , Secuencia Conservada/genética , Genes Homeobox/genética , Ligamiento Genético , Especiación Genética , Humanos , Mutación INDEL/genética , Intrones/genética , Sanguijuelas/anatomía & histología , Moluscos/anatomía & histología , Familia de Multigenes/genética , Poliquetos/anatomía & histología , Sintenía/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA