Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 130(4): 694-700, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38177659

RESUMEN

BACKGROUND: Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS: This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS: A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS: Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamiento farmacológico , Estudios Retrospectivos , Estudios Prospectivos , Terapia Neoadyuvante , Pruebas Respiratorias/métodos , Biomarcadores
2.
Cell Commun Signal ; 22(1): 7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167159

RESUMEN

Cancer remains a significant global public health concern, with increasing incidence and mortality rates worldwide. Oxidative stress, characterized by the production of reactive oxygen species (ROS) within cells, plays a critical role in the development of cancer by affecting genomic stability and signaling pathways within the cellular microenvironment. Elevated levels of ROS disrupt cellular homeostasis and contribute to the loss of normal cellular functions, which are associated with the initiation and progression of various types of cancer. In this review, we have focused on elucidating the downstream signaling pathways that are influenced by oxidative stress and contribute to carcinogenesis. These pathways include p53, Keap1-NRF2, RB1, p21, APC, tumor suppressor genes, and cell type transitions. Dysregulation of these pathways can lead to uncontrolled cell growth, impaired DNA repair mechanisms, and evasion of cell death, all of which are hallmark features of cancer development. Therapeutic strategies aimed at targeting oxidative stress have emerged as a critical area of investigation for molecular biologists. The objective is to limit the response time of various types of cancer, including liver, breast, prostate, ovarian, and lung cancers. By modulating the redox balance and restoring cellular homeostasis, it may be possible to mitigate the damaging effects of oxidative stress and enhance the efficacy of cancer treatments. The development of targeted therapies and interventions that specifically address the impact of oxidative stress on cancer initiation and progression holds great promise in improving patient outcomes. These approaches may include antioxidant-based treatments, redox-modulating agents, and interventions that restore normal cellular function and signaling pathways affected by oxidative stress. In summary, understanding the role of oxidative stress in carcinogenesis and targeting this process through therapeutic interventions are of utmost importance in combating various types of cancer. Further research is needed to unravel the complex mechanisms underlying oxidative stress-related pathways and to develop effective strategies that can be translated into clinical applications for the management and treatment of cancer. Video Abstract.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal , Neoplasias/metabolismo , Oxidación-Reducción , Carcinogénesis , Microambiente Tumoral
3.
Pharmacol Res ; 206: 107302, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39004242

RESUMEN

Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.


Asunto(s)
Evolución Clonal , Resistencia a Antineoplásicos , Genómica , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Humanos , Resistencia a Antineoplásicos/genética , Evolución Clonal/genética , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
4.
Chin J Cancer Res ; 36(3): 341-350, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988484

RESUMEN

Aging and circadian rhythms have been connected for decades, but their molecular interaction has remained unknown, especially for cancers. In this situation, we summarized the current research actuality and problems in this field using the bibliometric analysis. Publications in the PubMed and Web of Science databases were retrieved. Overall, there is a rising trend in the publication volume regarding aging and circadian rhythms in the field of cancer. Researchers from USA, Germany, Italy, China and England have greater studies than others. Top three publication institutions are University of California System, UDICE-French Research Universities and University of Texas System. Current research hotspots include oxidative stress, breast cancer, melatonin, cell cycle, calorie restriction, prostate cancer and NF-KB. In conclusion, results generated by bibliometric analysis indicate that many approaches involve in the complex interactions between aging and circadian rhythm in cancer. These established and emerging research directions guide our exploration of the regulatory mechanisms of aging and circadian rhythms in cancer and provide a reference for developing new research avenues.

5.
Ann Surg Oncol ; 30(3): 1522-1529, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36520230

RESUMEN

BACKGROUND: According to the JCOG0802 study, there were many non-cancer-related deaths in the lobectomy group. Meanwhile, the median age of the enrolled patients in the JCOG0802 study was 67 years old. Whether this difference in perioperative outcomes and survival outcomes is related to age remains unknown. We aim to investigate whether the sublobectomy was comparable to lobectomy in elderly (≥ 75 years old) patients with peripheral solid-dominant [50% ≤ consolidation tumor ratio (CTR) ≤ 1] and diameter ≤ 2 cm non-small cell lung cancer (NSCLC). METHODS: We retrospectively included 10,830 patients who underwent surgery treatment at two large-volume medical centers, Taizhou Hospital of Zhejiang Province and Shanghai Chest Hospital, from January 2016 to January 2018. Of these, 164 patients aged ≥ 75 years, tumor ≤ 2 cm, and 50% ≤ CTR ≤ 1 who received lobectomy or sublobectomy were included in our study. The perioperative outcomes, survival analyses, analysis of death patterns, tumor recurrence patterns, and Cox regression analyses were performed. RESULTS: On perioperative outcomes, sublobectomy was associated with a shorter operation time (p < 0.001), and in terms of survival outcomes, the 5-year overall survival (OS, p = 0.85) and 5-year disease-free surivial (DFS, p = 0.58) did not differ significantly between the two groups. The Cox regression analyses showed that CTR value, visceral pleural infiltration, and smoking were independent risk factors for worse OS. Furthermore, tumor recurrence pattern and death patterns between the two groups did not differ significantly. CONCLUSIONS: Sublobectomy could achieve superior perioperative outcomes and equivalent oncological efficacy in comparison with lobectomy in elderly patients (≥ 75 years old) with peripheral solid-dominant and diameter ≤ 2 cm NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anciano , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia/patología , Neumonectomía , China , Estadificación de Neoplasias
6.
Cell Commun Signal ; 21(1): 289, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845675

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that play pivotal roles in regulating gene expression and have been implicated in the pathogenesis of numerous cancers. miRNA-3652, though relatively less explored, has recently emerged as a potential key player in ovarian cancer's molecular landscape. This review aims to delineate the functional significance and tumor progression role of miRNA-3652 in ovarian cancer, shedding light on its potential as both a diagnostic biomarker and therapeutic target. A comprehensive literature search was carried out using established databases, the focus was on articles that reported the role of miRNA-3652 in ovarian cancer, encompassing mechanistic insights, functional studies, and its association with clinical outcomes. This updated review highlighted that miRNA-3652 is intricately involved in ovarian cancer cell proliferation, migration, and invasion, its dysregulation was linked to altered expression of critical genes involved in tumor growth and metastasis; furthermore, miRNA-3652 expression levels were found to correlate with clinical stages, prognosis, and response to therapy in ovarian cancer patients. miRNA-3652 holds significant promise as a vital molecular player in ovarian cancer's pathophysiology. Its functional role and impact on tumor progression make it a potential candidate for diagnostic and therapeutic applications in ovarian cancer. Given the pivotal role of miRNA-3652 in ovarian cancer, future studies should emphasize in-depth mechanistic explorations, utilizing advanced genomic and proteomic tools. Collaboration between basic scientists and clinicians will be vital to translating these findings into innovative diagnostic and therapeutic strategies, ultimately benefiting ovarian cancer patients. Video Abstract.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/metabolismo , Proteómica , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
7.
Cell Commun Signal ; 21(1): 145, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337283

RESUMEN

The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.


Asunto(s)
Melanoma , Neuroblastoma , Canales Catiónicos TRPM , Humanos , Calcio/metabolismo , Proliferación Celular , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
8.
Cell Commun Signal ; 21(1): 89, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127651

RESUMEN

Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Fenoles/farmacología , Fenoles/uso terapéutico
9.
Bipolar Disord ; 25(1): 56-65, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409044

RESUMEN

BACKGROUND: The use of lithium during breast-feeding has not been comprehensively investigated in humans due to concerns about lithium toxicity. PROCEDURE: We analyzed lithium in the kidneys of nursed pups of lithium medicated mothers, using analytical spectroscopy in a novel rat model. The mothers were healthy rats administered lithium via gavage (1000 mg/day Li2 CO3 per 50 kg body weight). RESULTS: Lithium was detected in the breast milk, and in the blood of pups (0.08 mM), of lithium-exposed dams at post-natal day 18 (P18), during breast-feeding. No lithium was detected after breast-feeding, at P25 (4 days after cessation of nursing). The lithium pups blood had elevated urea nitrogen at P18 and reduced total T4 at P18 and P25, indicating a longer-term effect on the kidneys and the thyroid gland. Multivariate machine-learning analysis of spectroscopy data collected from the excised kidneys of pups showed elevated potassium in lithium-exposed animals both during- and after breast-feeding. The elevated renal potassium was associated with low nephrin expression in the kidneys measured immunohistochemically during breast-feeding. After lithium exposure is stopped, the filtration of lithium from the kidneys reverses these effects. Our study showed that breastfeeding during lithium use has an effect on the kidneys of the offspring in rats.


Asunto(s)
Trastorno Bipolar , Leche Humana , Femenino , Ratas , Lactante , Humanos , Animales , Leche Humana/química , Litio/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Riñón , Potasio/análisis , Potasio/uso terapéutico , Lactancia Materna
10.
J Nanobiotechnology ; 21(1): 136, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101280

RESUMEN

It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Nanoestructuras , Masculino , Humanos , Estructuras Metalorgánicas/química , Biomarcadores de Tumor , Nanoestructuras/química , Aptámeros de Nucleótidos/química , Límite de Detección
11.
Ecotoxicol Environ Saf ; 264: 115477, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717352

RESUMEN

During the development of nanotechnology, the production of many substances containing nanoparticles leads to the release of various nanoparticles into the environment, including the water ecosystem. The main goal of the current research was to study the ultrastructural characteristics of the entry and bioaccumulation of Fe3O4 nanoparticles in the small intestine of Cyprinus carpio (Linnaeus, 1758), as well as the pathomorphological changes in the fish organism. Two different doses (10 and 100 mg) of Fe3O4 nanoparticles were fed to fingerlings for 7 days and then intestinal samples were taken and studied. It was found that the extent of damages was boosted within the increment of nanoparticle concentration. The sequence and bioaccumulation of Fe3O4 nanoparticles in the small intestine of fish occurred as below: firstly, the nanoparticles passed into microvilli located in the apical part of enterocytes in the mucosa layer, from there into the cytoplasm of the epithelial cells, including cytoplasmatic organelles (nucleus, mitochondria, lysosomes, fat granules), and then into a lamina propria of the mucosa of the small intestine and passed into the endothelium of the blood vessels and to the erythrocytes of the vessels which located in the lumen. It was determined that although the nanoparticles were up to 30 nm in size, only particles with a maximum size of 20 nm could penetrate the intestinal wall. Thus, the release of Fe3O4 nanoparticles into the environment in high doses has a negative effect on the living ecosystem, including the body of fish living in the water.


Asunto(s)
Carpas , Nanopartículas , Animales , Ecosistema , Intestinos , Lisosomas , Acuicultura , Hierro , Nanopartículas/toxicidad
12.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373169

RESUMEN

Our previous study found that miR-145 was downregulated in non-small cell lung cancer (NSCLC) tissues and that it could inhibit the cell proliferation in transfected NSCLC cells. In this study, we found that miR-145 was downregulated in NSCLC plasma samples compared to healthy controls. A receiver operating characteristic curve analysis indicated that plasma miR-145 expression was correlated with NSCLC in patient samples. We further revealed that the transfection of miR-145 inhibited the proliferation, migration, and invasion of NSCLC cells. Most importantly, miR-145 significantly delayed the tumor growth in a mouse model of NSCLC. We further identified GOLM1 and RTKN as the direct targets of miR-145. A cohort of paired tumors and adjacent non-malignant lung tissues from NSCLC patients was used to confirm the downregulated expression and diagnostic value of miR-145. The results were highly consistent between our plasma and tissue cohorts, confirming the clinical value of miR-145 in different sample groups. In addition, we also validated the expressions of miR-145, GOLM1, and RTKN using the TCGA database. Our findings suggested that miR-145 is a regulator of NSCLC and it plays an important role in NSCLC progression. This microRNA and its gene targets may serve as potential biomarkers and novel molecular therapeutic targets in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Pulmón/patología , Proliferación Celular/genética , Biomarcadores de Tumor/metabolismo
13.
Br J Cancer ; 126(1): 57-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718356

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis. By performing multiomic profiling, we recently uncovered super-enhancer heterogeneity between breast cancer subtypes. Our data also revealed TCOF1 as a putative TNBC-specific super-enhancer-regulated gene. TCOF1 plays a critical role in craniofacial development but its function in cancer remains unclear. METHODS: Overall survival and multivariant Cox regression analyses were conducted using the METABRIC data set. The effect of TCOF1 knockout on TNBC growth and stemness was evaluated by in vitro and in vivo assays. RNA-seq and rescue experiments were performed to explore the underlying mechanisms. RESULTS: TCOF1 is frequently upregulated in TNBC and its elevated expression correlates with shorter overall survival. TCOF1 depletion significantly inhibits the growth and stemness of basal-like TNBC, but not of mesenchymal-like cells, highlighting the distinct molecular dependency in different TNBC subgroups. RNA-seq uncovers several stem cell molecules regulated by TCOF1. We further demonstrate that KIT is a downstream effector of TCOF1 in mediating TNBC stemness. TCOF1 expression in TNBC is regulated by the predicted super-enhancer. CONCLUSIONS: TCOF1 depletion potently attenuates the growth and stemness of basal-like TNBC. Expression of TCOF1 may serve as a TNBC prognostic marker and a therapeutic target.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Biología Computacional/métodos , Bases de Datos Genéticas , Humanos , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Pronóstico , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Transl Med ; 20(1): 559, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463188

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, contribute to an immunosuppressive tumor microenvironment (TME) through the induction and functional polarization of protumoral macrophages. We have herein investigated the contribution of CAFs to monocyte recruitment and macrophage polarization. We also sought to identify a possible paracrine mechanism by which CAF-educated monocytes affect breast cancer (BC) cell progression. METHODS: Monocytes were educated by primary CAFs and normal fibroblast (NF); the phenotypic alterations of CAF- or NF-educated monocytes were measured by flow cytometry. Exosomes isolated from the cultured conditioned media of the educated monocytes were characterized. An in vivo experiment using a subcutaneous transplantation tumor model in athymic nude mice was conducted to uncover the effect of exosomes derived from CAF- or NF-educated monocytes on breast tumor growth. Gain- and loss-of-function experiments were performed to explore the role of miR-181a in BC progression with the involvement of the AKT signaling pathway. Western blotting, enzyme-linked immunosorbent assay, RT-qPCR, flow cytometry staining, migration assay, immunohistochemical staining, and bioinformatics analysis were performed to reveal the underlying mechanisms. RESULTS: We illustrated that primary CAFs recruited monocytes and established pro-tumoral M2 macrophages. CAF may also differentiate human monocyte THP-1 cells into anti-inflammatory M2 macrophages. Besides, we revealed that CAFs increased reactive oxygen species (ROS) generation in THP-1 monocytes, as differentiating into M2 macrophages requires a level of ROS for proper polarization. Importantly, T-cell proliferation was suppressed by CAF-educated monocytes and their exosomes, resulting in an immunosuppressive TME. Interestingly, CAF-activated, polarized monocytes lost their tumoricidal abilities, and their derived exosomes promoted BC cell proliferation and migration. In turn, CAF-educated monocyte exosomes exhibited a significant promoting effect on BC tumorigenicity in vivo. Of clinical significance, we observed that up-regulation of circulating miR-181a in BC was positively correlated with tumor aggressiveness and found a high level of this miRNA in CAF-educated monocytes and their exosomes. We further clarified that the pro-oncogenic effect of CAF-educated monocytes may depend in part on the exosomal transfer of miR-181a through modulating the PTEN/Akt signaling axis in BC cells. CONCLUSIONS: Our findings established a connection between tumor stromal communication and tumor progression and demonstrated an inductive function for CAF-educated monocytes in BC cell progression. We also proposed a supporting model in which exosomal transfer of miR-181a from CAF-educated monocytes activates AKT signaling by regulating PTEN in BC cells.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , MicroARNs , Monocitos , Microambiente Tumoral , Animales , Humanos , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Fibroblastos Asociados al Cáncer/inmunología , Macrófagos/inmunología , Ratones Desnudos , MicroARNs/genética , MicroARNs/inmunología , Monocitos/inmunología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Especies Reactivas de Oxígeno , Transducción de Señal , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
15.
Cancer Cell Int ; 22(1): 196, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590367

RESUMEN

Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.

16.
Cancer Cell Int ; 22(1): 280, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076273

RESUMEN

Long non-coding RNA (LncRNA) is a novel and diverse class of regulatory transcripts that are frequently dysregulated in numerous tumor types. LncRNAs are involved in a complicated molecular network, regulating gene expression, and modulating diverse cellular activities in different cancers including colorectal cancer (CRC). Evidence indicates that lncRNAs can be used as a potential biomarker for the prognosis and diagnosis of CRC as they are aberrantly expressed in CRC cells. The high expression or silencing of lncRNAs is associated with cell proliferation, invasion, metastasis, chemoresistance and apoptosis in CRC. LncRNAs exert both pro-apoptotic and anti-apoptotic functions in CRC. The expression of some oncogene lncRNAs is upregulated which leads to the inhibition of apoptotic pathways, similarly, the tumor suppressor lncRNAs are downregulated in CRC. In this review, we describe the function and mechanisms of lncRNAs to regulate the expression of genes that are involved directly or indirectly in controlling cellular apoptosis in CRC. Furthermore, we also discussed the different apoptotic pathways in normal cells and the mechanisms by which CRC evade apoptosis.

17.
Cancer Cell Int ; 22(1): 386, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482329

RESUMEN

Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.

18.
Cancer Cell Int ; 22(1): 354, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376956

RESUMEN

Recent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient's clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.

19.
Cancer Cell Int ; 22(1): 305, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207736

RESUMEN

Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.

20.
Cancer Cell Int ; 22(1): 284, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109789

RESUMEN

The PI3K-Akt-mechanistic (formerly mammalian) target of the rapamycin (mTOR) signaling pathway is important in a variety of biological activities, including cellular proliferation, survival, metabolism, autophagy, and immunity. Abnormal PI3K-Akt-mTOR signalling activation can promote transformation by creating a cellular environment conducive to it. Deregulation of such a system in terms of genetic mutations and amplification has been related to several human cancers. Consequently, mTOR has been recognized as a key target for the treatment of cancer, especially for treating cancers with elevated mTOR signaling due to genetic or metabolic disorders. In vitro and in vivo, rapamycin which is an immunosuppressant agent actively suppresses the activity of mTOR and reduces cancer cell growth. As a result, various sirolimus-derived compounds have now been established as therapies for cancer, and now these medications are being investigated in clinical studies. In this updated review, we discuss the usage of sirolimus-derived compounds and other drugs in several preclinical or clinical studies as well as explain some of the challenges involved in targeting mTOR for treating various human cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA