Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Plant Biol ; 24(1): 395, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745139

RESUMEN

BACKGROUND: In common wheat (Triticum aestivum L.), allelic variations in the high-molecular-weight glutenin subunits Glu-B1 locus have important effects on grain end-use quality. The Glu-B1 locus consists of two tightly linked genes encoding x- and y-type subunits that exhibit highly variable frequencies. However, studies on the discriminating markers of the alleles that have been reported are limited. Here, we developed 11 agarose gel-based PCR markers for detecting Glu-1Bx and Glu-1By alleles. RESULTS: By integrating the newly developed markers with previously published PCR markers, nine Glu-1Bx locus alleles (Glu-1Bx6, Glu-1Bx7, Glu-1Bx7*, Glu-1Bx7 OE, Glu-1Bx13, Glu-1Bx14 (-) , Glu-1Bx14 (+)/Bx20, and Glu-1Bx17) and seven Glu-1By locus alleles (Glu-1By8, Glu-1By8*, Glu-1By9, Glu-1By15/By20, Glu-1By16, and Glu-1By18) were distinguished in 25 wheat cultivars. Glu-1Bx6, Glu-1Bx13, Glu-1Bx14 (+)/Bx20, Glu-1By16, and Glu-1By18 were distinguished using the newly developed PCR markers. Additionally, the Glu-1Bx13 and Glu-1Bx14 (+)/Bx20 were distinguished by insertions and deletions in their promoter regions. The Glu-1Bx6, Glu-1Bx7, Glu-1By9, Glu-1Bx14 (-), and Glu-1By15/By20 alleles were distinguished by using insertions and deletions in the gene-coding region. Glu-1By13, Glu-1By16, and Glu-1By18 were dominantly identified in the gene-coding region. We also developed a marker to distinguish between the two Glu-1Bx14 alleles. However, the Glu-1Bx14 (+) + Glu-1By15 and Glu-1Bx20 + Glu-1By20 allele combinations could not be distinguished using PCR markers. The high-molecular-weight glutenin subunits of wheat varieties were analyzed by ultra-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the findings were compared with the results of PCR analysis. CONCLUSIONS: Seven Glu-1Bx and four Glu-1By allele detection markers were developed to detect nine Glu-1Bx and seven Glu-1By locus alleles, respectively. Integrating previously reported markers and 11 newly developed PCR markers improves allelic identification of the Glu-B1 locus and facilitates more effective analysis of Glu-B1 alleles molecular variations, which may improve the end-use quality of wheat.


Asunto(s)
Alelos , Glútenes , Reacción en Cadena de la Polimerasa , Triticum , Glútenes/genética , Glútenes/metabolismo , Triticum/genética , Marcadores Genéticos , Reacción en Cadena de la Polimerasa/métodos , Peso Molecular
2.
Planta ; 259(6): 124, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630137

RESUMEN

KEY MESSAGE: OsICS1 but not OsICS1-L mediates the rice response to Xoo inoculation, with its overexpression increasing resistance against this pathogen. OsICS1 but not OsICS-L is directly upregulated by OsWRKY6. Rice (Oryza sativa) is a staple crop for about half of the global population and is particularly important in the diets of people living in Asia, Latin America, and Africa. This crop is continually threatened by bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), which drastically reduces yields; therefore, it is needed to elucidate the plant's resistance mechanisms against Xoo. Isochorismate synthase (ICS1) generates salicylic acid (SA) and increases resistance against bacterial disease. The OsICS1 is differently annotated in rice genome databases and has not yet been functionally characterized in the context of Xoo infection. Here, we report that the expression of the OsICS1 is directly regulated by OsWRKY6 and increases plant resistance against Xoo. Inoculation with Xoo increased the expression of OsICS1 but not that of the long variant of OsICS1 (OsICS1-L). OsWRKY6 directly activated the OsICS1 promoter but not the OsICS1-L promoter. OsICS1 overexpression in rice increased resistance against Xoo through the induction of SA-dependent bacterial defense genes. These data show that OsICS1 promotes resistance against Xoo infection.


Asunto(s)
Oryza , Xanthomonas , Humanos , Asia , Oryza/genética , Regiones Promotoras Genéticas/genética , Ácido Salicílico
3.
Biophys J ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37837191

RESUMEN

Protein aggregates, formed from the assembly of aberrant, misfolded proteins, are a hallmark of neurodegenerative diseases. Disease-associated aggregates such as mutant Huntingtin polyQ inclusions, are typically enriched in p62/SQSTM1, an oligomeric protein that binds to and sequesters aberrant proteins. p62 has been suggested to sequester proteins through formation of liquid-like biomolecular condensates, but the physical mechanisms by which p62 condensates may regulate pathological protein aggregation remain unclear. Here, we use a light-inducible biomimetic condensate system to show that p62 condensates enhance coarsening of mutant polyQ aggregates through interface-mediated sequestration, which accelerates polyQ accumulation into larger aggregates. However, the resulting large aggregates accumulate polyubiquitinated proteins, which depletes free p62, ultimately suppressing further p62 condensation. This dynamic interplay between interface-mediated coarsening of solid aggregates and downstream consequences on the phase behavior of associated regulatory proteins could contribute to the onset and progression of protein aggregation diseases.

4.
Plant J ; 112(4): 966-981, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36168109

RESUMEN

Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.


Asunto(s)
Arabidopsis , Oryza , Oryza/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Arabidopsis/genética
5.
Theor Appl Genet ; 136(3): 33, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897507

RESUMEN

KEY MESSAGE: Eleven wheat lines that are missing genes for the 1D-encoded omega-5 gliadins will facilitate breeding efforts to reduce the immunogenic potential of wheat flour for patients susceptible to wheat allergy. Efforts to reduce the levels of allergens in wheat flour that cause wheat-dependent exercise-induced anaphylaxis are complicated by the presence of genes encoding omega-5 gliadins on both chromosomes 1B and 1D of hexaploid wheat. In this study, we screened 665 wheat germplasm samples using gene specific DNA markers for omega-5 gliadins encoded by the genes on 1D chromosome that were obtained from the reference wheat Chinese Spring. Eleven wheat lines missing the PCR product corresponding to 1D omega-5 gliadin gene sequences were identified. Two of the lines contained the 1BL·1RS translocation. Relative quantification of gene copy numbers by qPCR revealed that copy numbers of 1D omega-5 gliadins in the other nine lines were comparable to those in 1D null lines of Chinese Spring, while copy numbers of 1B omega-5 gliadins were like those of Chinese Spring. 2-D immunoblot analysis of total flour proteins from the selected lines using a specific monoclonal antibody against the N-terminal sequence of omega-5 gliadin showed no reactivity in regions of the blots containing previously identified 1D omega-5 gliadins. Interestingly, RP-UPLC analysis of the gliadin fractions of the selected lines indicated that the expression of omega-1,2 gliadins was also significantly reduced in seven of the lines, implying that 1D omega-5 gliadin and 1D omega-1,2 gliadin genes are tightly linked on the Gli-D1 loci of chromosome 1D. Wheat lines missing the omega-5 gliadins encoded by the genes on 1D chromosome should be useful in future breeding efforts to reduce the immunogenic potential of wheat flour.


Asunto(s)
Harina , Gliadina , Humanos , Gliadina/genética , Gliadina/metabolismo , Fitomejoramiento , Triticum/genética , Cromosomas/química , Cromosomas/metabolismo
6.
Planta ; 255(2): 47, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076864

RESUMEN

MAIN CONCLUSION: The rice protein OsWRKY6 directly activates OsWRKY45 and OsWRKY47 expression, and also activates OsPR1a and OsPR1b through the two OsWRKYs, and this transcriptional module participates in Xa1-mediated defense against the pathogen Xanthomonas oryzae pv. oryzae. Biotic stress, the pathogen Xanthomonas oryzae pv. oryzae (Xoo) in particular, negatively impacts worldwide productivity and yield in the staple crop rice (Oryza sativa). OsWRKY transcription factors are involved in various biotic stress responses in rice, and OsWRKY6 specifically acts as an important defense regulator against Xoo. However, the relationship between OsWRKY6 and other OsWRKYs, as well as its role in resistance (R) gene-mediated defense, have yet to be studied in depth. Here, we characterized a transcriptional cascade triggered by OsWRKY6 that regulated defense against Xoo infection mediated by the NBS-LRR protein Xa1. OsWRKY45 and OsWRKY47 were identified as direct transcriptional targets of OsWRKY6, and their two gene products reciprocally activated their two genes. Furthermore, OsWRKY6 activated OsPR1a and OsPR1b via the OsWRKY45 and OsWRKY47. Two OsWRKY6 RNAi knockdown lines showed significantly reduced defense even against an incompatible Xoo infection, and the expression of OsWRKY6 was not regulated by OsWRKY51 and OsWRKY88. This study reveals that a novel downstream transcriptional pathway activated by OsWRKY6 is involved in Xa1-mediated defense against Xoo.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142649

RESUMEN

Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959, 7946, and 14,205; and 22,895, 13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress­and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity­were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerance.


Asunto(s)
Superóxidos , Triticum , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Factores de Transcripción/metabolismo
8.
Langmuir ; 37(14): 4056-4063, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33793250

RESUMEN

A large subset of haptic surfaces employs electroadhesion to modulate both adhesion and friction at a sliding finger interface. The current theory of electroadhesion assumes that the applied electric field pulls the skin into stronger contact, increasing friction by increasing the real contact area, yet it is unknown what role environmental moisture plays in the effect. This paper uses atomic force microscopy (AFM)to determine the effect of humidity on the adhesion and friction between the single nanoscale asperity and individual human finger corneocytes. An analytical model of the total effective load of the AFM tip is developed to explain the humidity-voltage dependence of nanoscale adhesion and friction at contacting asperities. The results show that the electrowetting effect at the interface at high humidity accounts for 35% of the adhesive force but less than 8% of the total friction, implying that the electrowetting effect can be enhanced by optimizing surface topography to promote the formation and rupture of liquid menisci.


Asunto(s)
Electrohumectación , Fricción , Nanoestructuras/química , Piel/citología , Humanos , Humedad , Microscopía de Fuerza Atómica
9.
J Exp Bot ; 71(12): 3735-3748, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32227093

RESUMEN

WRKY proteins play essential roles as negative or positive regulators of pathogen defense. This study explored the roles of different OsWRKY proteins in basal defense and Xa1-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) infection in rice. Assays of disease in OsWRKY10KD and OsWRKY88KD lines following infection with an incompatible Xoo race, which induced Xa1-mediated resistance in wild-type plants, showed that OsWRKY10 and OsWRKY88 were positive regulators of Xa1-mediated resistance. OsWRKY10 also acted as a positive regulator in basal defense by directly or indirectly activating transcription of defense-related genes. OsWRKY10 activated the OsPR1a promoter by binding to specific WRKY binding sites. Two transcriptional regulatory cascades of OsWRKY10 were identified in basal defense and Xa1-mediated resistance. In the first transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10 whereas OsWRKY51 acted upstream. OsWRKY10 activated OsPR1a in two distinct ways: by binding to its promoter and, at the same time, by indirect activation through OsWRKY47. In the second transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10, and OsWRKY88 acted upstream. These OsWRKY10 transcriptional regulatory cascades played important roles in basal defense and Xa1-mediated resistance to enable the mounting of a rapid immune response against pathogens.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Enfermedades de las Plantas/genética
10.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353195

RESUMEN

The objective of this study is the simulation of the most affected design factors and variables of the clutch pack for the power-shift transmission (PST) of a tractor based measured data. The simulation model, the mathematical model of sliding velocity, a moment of inertia, and clutch engagement pressure of clutch pack were developed using the powertrain and configurations of the real PST tractor. In this study, the sensor fusion method was used to precisely measure the proportional valve pressure by test bench, which was applied to the simulation model. The clutch engagement times were found 1.20 s at all temperatures for determined factors. The engagement pressures have a significant difference at various temperatures (25 to 100 °C) of the hydraulic oils after the 1.20 s but the most affected factors were satisfied with the simulation conditions that ensure the clutch engagement on time. Finally, this sensor fusion method is believed to be helpful in realizing precision agriculture through minimization of power loss and maximum energy efficiency of tractors.

11.
Plant Cell Rep ; 35(9): 1975-85, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27300023

RESUMEN

KEY MESSAGE: OsWRKY51 functions as a positive transcriptional regulator in defense signaling against Xanthomonas oryzae pv. oryzae by direct DNA binding to the promoter of defense related gene, OsPR10a. OsWRKY51 in rice (Oryza sativa L.) is induced by exogenous salicylic acid (SA) and inoculation with Xanthomonas oryzae pv. oryzae (Xoo). To examine the role of OsWRKY51 in the defense response of rice, we generated OsWRKY51 overexpressing and underexpressing transgenic rice plants. OsWRKY51-overexpressing transgenic rice lines were more resistant to Xoo and showed greater expression of defense-related genes than wild-type (WT) plants, while OsWRKY51-underexpressing lines were more susceptible to Xoo and showed less expression of defense-associated genes than WT plants. Transgenic lines overexpressing OsWRKY51 showed growth retardation compared to WT plants. In contrast, transgenic lines underexpressing OsWRKY51 by RNA interference showed similar plant height with WT plants. Transient expression of OsWRKY51-green fluorescent protein fusion protein in rice protoplasts revealed that OsWRKY51 was localized in the nucleus. OsWRKY51 bound to the W-box and WLE1 elements of the OsPR10a promoter. Based on these results, we suggest that OsWRKY51 is a positive transcriptional regulator of defense signaling and has direct DNA binding ability to the promoter of OsPR10a, although it is reported to be a negative regulator in GA signaling.


Asunto(s)
Oryza/inmunología , Oryza/microbiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Xanthomonas/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Modelos Biológicos , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Ácido Salicílico/farmacología , Fracciones Subcelulares/metabolismo , Factores de Transcripción/genética , Xanthomonas/efectos de los fármacos
12.
New Phytol ; 208(3): 846-59, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26083148

RESUMEN

WRKY proteins are transcription factors (TFs) that regulate the expression of defense-related genes. The salicylic acid (SA)-inducible Oryza sativa WRKY6 (OsWRKY6) was identified as a positive regulator of Oryza sativa pathogenesis-related 10a (OsPR10a) by transient expression assays. A physical interaction between OsWRKY6 and W-box-like element 1 (WLE1), which positively regulates OsPR10a/probenazole induced protein 1 expression, was verified in vitro. Several pathogenesis-related (PR) genes were constitutively activated, including OsPR10a, and transgenic rice (Oryza sativa) plants overexpressing (ox) OsWRKY6 exhibited enhanced disease resistance to pathogens. By contrast, PR gene induction was compromised in transgenic OsWRKY6-RNAi lines, suggesting that OsWRKY6 is a positive regulator of defense responses. OsWRKY6-ox lines displayed leaf lesions, and increased OsWRKY6 levels caused cell death. Salicylic acid (SA) concentrations were higher in OsWRKY6-ox lines than in wild-type (WT) plants, and transcript levels of Oryza sativa isochorismate synthase 1 (OsICS1), which encodes a major enzyme involved in SA biosynthesis, were higher in OsWRKY6-ox lines than in WT. OsWRKY6 directly bound to the OsICS1 promoter in vivo. This indicates that OsWRKY6 can directly regulate OsICS1 expression and thereby increase SA concentrations. OsWRKY6 autoregulates its own expression. OsWRKY6 protein degradation is possibly regulated by ubiquitination. Our results suggest that OsWRKY6 positively regulates defense responses through activation of OsICS1 expression and OsWRKY6 stabilization.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Transferasas Intramoleculares/metabolismo , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Ácido Salicílico/metabolismo
13.
Front Plant Sci ; 14: 1112297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389296

RESUMEN

The agricultural traits that constitute basic plant breeding information are usually quantitative or complex in nature. This quantitative and complex combination of traits complicates the process of selection in breeding. This study examined the potential of genome-wide association studies (GWAS) and genomewide selection (GS) for breeding ten agricultural traits by using genome-wide SNPs. As a first step, a trait-associated candidate marker was identified by GWAS using a genetically diverse 567 Korean (K)-wheat core collection. The accessions were genotyped using an Axiom® 35K wheat DNA chip, and ten agricultural traits were determined (awn color, awn length, culm color, culm length, ear color, ear length, days to heading, days to maturity, leaf length, and leaf width). It is essential to sustain global wheat production by utilizing accessions in wheat breeding. Among the traits associated with awn color and ear color that showed a high positive correlation, a SNP located on chr1B was significantly associated with both traits. Next, GS evaluated the prediction accuracy using six predictive models (G-BLUP, LASSO, BayseA, reproducing kernel Hilbert space, support vector machine (SVM), and random forest) and various training populations (TPs). With the exception of the SVM, all statistical models demonstrated a prediction accuracy of 0.4 or better. For the optimization of the TP, the number of TPs was randomly selected (10%, 30%, 50% and 70%) or divided into three subgroups (CC-sub 1, CC-sub 2 and CC-sub 3) based on the subpopulation structure. Based on subgroup-based TPs, better prediction accuracy was found for awn color, culm color, culm length, ear color, ear length, and leaf width. A variety of Korean wheat cultivars were used for validation to evaluate the prediction ability of populations. Seven out of ten cultivars showed phenotype-consistent results based on genomics-evaluated breeding values (GEBVs) calculated by the reproducing kernel Hilbert space (RKHS) predictive model. Our research provides a basis for improving complex traits in wheat breeding programs through genomics assisted breeding. The results of our research can be used as a basis for improving wheat breeding programs by using genomics-assisted breeding.

14.
Nat Phys ; 19(4): 586-596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073403

RESUMEN

Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here we show that both native and synthetic condensates display an exponential size distribution, which is captured by Monte Carlo simulations of fast nucleation followed by coalescence. In contrast, pathological aggregates exhibit a power-law size distribution. These distinct behaviours reflect the relative importance of nucleation and coalescence kinetics. We demonstrate this by utilizing a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. The appearance of exponential distributions for abrupt nucleation versus power-law distributions under continuous nucleation may reflect a general principle that determines condensate size distributions.

15.
Plant Methods ; 19(1): 118, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37924111

RESUMEN

BACKGROUND: Crop breeding should be accelerated to address global warming and climate change. Wheat (Triticum aestivum L.) is a major food crop. Speed breeding (SB) and speed vernalization (SV) techniques for spring and winter wheat have recently been established. However, there are few practical examples of these strategies being used economically and efficiently in breeding programs. We aimed to establish and evaluate the performance of a breeder-friendly and energy-saving generation acceleration system by modifying the SV + SB system. RESULTS: In this study, a four-generation advancement system for wheat (regardless of its growth habits) was established and evaluated using an energy-efficient extended photoperiod treatment. A glasshouse with a 22-hour photoperiod that used 10 h of natural sunlight and 12 h of LED lights, and minimized temperature control during the winter season, was successful in accelerating generation. Even with one or two field tests, modified speed breeding (mSB) combined with a speed vernalization system (SV + mSB) reduced breeding time by more than half compared to traditional field-based methods. When compared to the existing SV + SB system, the SV + mSB system reduced energy use by 80% to maintain a 22-hour photoperiod. Significant correlations were found between the SV + mSB and field conditions in the number of days to heading (DTH) and culm length (CL). Genetic resources, recombinant inbred lines, and breeding materials that exhibited shorter DTH and CL values under SV + mSB conditions showed the same pattern in the field. CONCLUSIONS: The results of our SV + mSB model, as well as its practical application in wheat breeding programs, are expected to help breeders worldwide incorporate generation acceleration systems into their conventional breeding programs.

16.
Plants (Basel) ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616313

RESUMEN

The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.

17.
Plants (Basel) ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986938

RESUMEN

Overexpression of Glu-1Bx7 via allele 1Bx7OE significantly contributes to high dough strength in some wheat varieties and is useful for improving wheat quality. However, the proportion of wheat varieties containing Bx7OE is quite low. In this study, four cultivars containing 1Bx7OE were selected, and among the selected varieties, Chisholm (1Ax2*, 1Bx7OE + 1By8*, and 1Dx5 + 1Dx10) was crossed with Keumkang, a wheat variety that contains 1Bx7 (1Ax2*, 1Bx7 + 1By8, and 1Dx5 + 1Dx10). SDS-PAGE and UPLC analyses showed that the expression of the high-molecular-weight glutenin subunit (HMW-GS) 1Bx7 was significantly higher in NILs (1Ax2*, 1Bx7OE + 1By8*, and 1Dx5 + 1Dx10) compared with that in Keumkang. Wheat quality was analyzed with near infrared reflectance spectroscopy by measuring the protein content and SDS-sedimentation of NILs. The protein content of NILs (12.94%) was 21.65% higher than that of Chisholm (10.63%) and 4.54% higher than that of Keumkang (12.37%). In addition, the SDS-sedimentation value of NILs (44.29 mL) was 14.97% and 16.44% higher than that of Keumkang (38.52 mL) and Chisholm (38.03 mL), respectively. This study predicts that the quality of domestic wheat can be improved by crossbreeding with 1Bx7OE-containing cultivars.

18.
Plant Cell Rep ; 31(10): 1845-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22717673

RESUMEN

Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.


Asunto(s)
Brassica rapa/microbiología , Resistencia a la Enfermedad , Oryza/genética , Pectobacterium carotovorum/patogenicidad , Enfermedades de las Plantas/inmunología , Proteínas/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Brassica rapa/genética , Brassica rapa/inmunología , Regulación de la Expresión Génica de las Plantas , Proteínas Repetidas Ricas en Leucina , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Proteínas/genética , Proteínas/inmunología , Estrés Fisiológico , Transformación Genética , Transgenes
19.
Sci Robot ; 7(63): eabl4543, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196072

RESUMEN

Compared to relatively mature audio and video human-machine interfaces, providing accurate and immersive touch sensation remains a challenge owing to the substantial mechanical and neurophysical complexity of touch. Touch sensations during relative lateral motion between a skin-screen interface are largely dictated by interfacial friction, so controlling interfacial friction has the potential for realistic mimicry of surface texture, shape, and material composition. In this work, we show a large modulation of finger friction by locally changing surface temperature. Experiments showed that finger friction can be increased by ~50% with a surface temperature increase from 23° to 42°C, which was attributed to the temperature dependence of the viscoelasticity and the moisture level of human skin. Rendering virtual features, including zoning and bump(s), without thermal perception was further demonstrated with surface temperature modulation. This method of modulating finger friction has potential applications in gaming, virtual and augmented reality, and touchscreen human-machine interaction.


Asunto(s)
Tecnología Háptica , Percepción del Tacto , Dedos , Fricción , Humanos , Temperatura
20.
ACS Appl Mater Interfaces ; 13(2): 3303-3310, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33417426

RESUMEN

With the rapid development of haptic devices, there is an increasing demand to understand finger pad topography under different conditions, especially for investigation of the human-machine interface in surface haptic devices. An accurate description of finger pad topography across scales is essential for the study of the interfaces and could be used to predict the real area of contact and friction force, both of which correlate closely with human tactile perception. However, there has been limited work reporting the heterogeneous topography of finger pads across scales. In this work, we propose a detailed heterogeneous finger topography model based on the surface roughness power spectrum. The analysis showed a significant difference between the topography on ridges and valleys of the fingerprint and that the real contact area estimation could be different by a factor of 3. In addition, a spatial-spectral analysis method is developed to effectively compare topography response to different condition changes. This paper provides insights into finger topography for advanced human-machine interaction interfaces.


Asunto(s)
Dermatoglifia , Dedos/anatomía & histología , Piel/anatomía & histología , Dedos/fisiología , Fricción , Humanos , Fenómenos Fisiológicos de la Piel , Propiedades de Superficie , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA