Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ecotoxicol Environ Saf ; 233: 113333, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203006

RESUMEN

Zinc (Zn) is an essential micronutrient for plants. However, excess Zn is toxic to non-accumulating plants like Arabidopsis thaliana. To cope with Zn toxicity, non-accumulating plants need to keep excess Zn in the less sensitive root tissues and restrict its translocation to the vulnerable shoot tissues, a process referred to as Zn immobilization in the root. However, the mechanism underlying Zn immobilization is not fully understood. In Arabidopsis, sequestration of excess Zn to the vacuole of root cells is crucial for Zn immobilization, facilitated by distinct tonoplast-localized transporters. As some members of the aquaporin superfamily have been implicated in transporting metal ions besides polar but non-charged small molecules, we tested whether Arabidopsis thaliana tonoplast intrinsic proteins (AtTIPs) could be involved in Zn immobilization and resistance. We found that AtTIP2;2 is involved in retaining excess Zn in the root, limiting its translocation to the shoot, and facilitating its accumulation in the leaf trichome. Furthermore, when expressed in yeast, the tonoplast-localized AtTIP2;2 renders glutathione (GSH)-dependent Zn resistance to yeast cells, suggesting that AtTIP2;2 facilitates the across-tonoplast transport of GSH-Zn complexes. Our findings provide new insights into aquaporins' roles in heavy metal resistance and detoxification in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Vacuolas/metabolismo , Zinc/metabolismo , Zinc/toxicidad
2.
New Phytol ; 229(5): 2827-2843, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33206385

RESUMEN

Atmospheric CO2 concentrations exert a strong influence on the susceptibility of plants to pathogens. However, the mechanisms involved in the CO2 -dependent regulation of pathogen resistance are largely unknown. Here we show that the expression of tomato (Solanum lycopersicum) ß-CARBONIC ANHYDRASE 3 (ßCA3) is induced by the virulent pathogen Pseudomonas syringae pv. tomato DC3000. The role of ßCA3 in the high CO2 -mediated response in tomato and two other Solanaceae crops is distinct from that in Arabidopsis thaliana. Using ßCA3 knock-out and over-expression plants, we demonstrate that ßCA3 plays a positive role in the activation of basal immunity, particularly under high CO2 . ßCA3 is transcriptionally activated by the transcription factor NAC43 and is also post-translationally regulated by the receptor-like kinase GRACE1. The ßCA3 pathway of basal immunity is independent on stomatal- and salicylic-acid-dependent regulation. Global transcriptome analysis and cell wall metabolite measurement implicate cell wall metabolism/integrity in ßCA3-mediated basal immunity under both CO2 conditions. These data not only highlight the importance of ßCA3 in plant basal immunity under high CO2 in a well-studied susceptible crop-pathogen system, but they also point to new targets for disease management strategies in a changing climate.


Asunto(s)
Anhidrasas Carbónicas , Inmunidad de la Planta , Solanum lycopersicum , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas , Pseudomonas syringae/metabolismo
3.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260759

RESUMEN

Salicylic acid (SA) is a plant hormone which plays a crucial role in the plant defense against various pathogens and abiotic stresses. Increasing reports suggest that this phenolic compound and its derivatives, collectively termed salicylates, not only regulate plant defense but also have beneficial effects on human health. Both natural and synthetic salicylates are known to have multiple targets in humans, thereby exhibiting various appreciating pharmacological roles, including anti-inflammatory, anticancer, neuroprotective, antidiabetic effects, and so on. The role of some salicylates, such as acetylsalicylic acid (aspirin), 5-aminosalicylic acid (mesalazine), and amorfrutins in human diseases has been well studied in vitro. However, their clinical significance in different diseases is largely unknown. Based on recent studies, five natural salicylates, including amorfrutin, ginkgolic acid, grifolic acid, tetrahydrocannabinolic acid, and cannabidiolic acid, showed potential roles in different challenging human diseases. This review summarizes together some of the recent information on multitarget regulatory activities of these natural salicylates and their pharmacological roles in human health.


Asunto(s)
Salud , Salicilatos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antivirales/química , Antivirales/farmacología , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Salicilatos/química
4.
Mol Plant Microbe Interact ; 31(9): 871-888, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29781762

RESUMEN

This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Plantas/inmunología , Ácido Salicílico/metabolismo , Transducción de Señal/inmunología , Vías Biosintéticas , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/química , Ácido Salicílico/química
5.
PLoS Pathog ; 12(3): e1005518, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27007252

RESUMEN

Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.


Asunto(s)
Botrytis/inmunología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Enfermedades de las Plantas/parasitología , Plantas/inmunología , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Etilenos/metabolismo , Hojas de la Planta/genética , Pseudomonas syringae/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Mol Plant Microbe Interact ; 30(2): 87-100, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27992291

RESUMEN

To elucidate one or more mechanisms through which microrchidia (MORC) proteins impact immunity, epigenetic gene silencing, and DNA modifications, the enzymatic activities of plant MORCs were characterized. Previously, we showed that plant MORC1s have ATPase and DNA endonuclease activities. Here, we demonstrate that plant MORCs have topoisomerase type II (topo II)-like activities, as they i) covalently bind DNA, ii) exhibit DNA-stimulated ATPase activity, iii) relax or nick supercoiled DNA, iv) catenate DNA, and v) decatenante kinetoplast DNA. Mutational analysis of tomato SlMORC1 suggests that a K loop-like sequence is required to couple DNA binding to ATPase stimulation as well as for efficient SlMORC1's DNA relaxation and catenation activities and in planta suppression of INF1-induced cell death, which is related to immunity. Human MORCs were found to exhibit the same topo II-like DNA modification activities as their plant counterparts. In contrast to typical topo IIs, SlMORC1 appears to require one or more accessory factors to complete some of its enzymatic activities, since addition of tomato extracts were needed for ATP-dependent, efficient conversion of supercoiled DNA to nicked/relaxed DNA and catenanes and for formation of topoisomer intermediates. Both plant and human MORCs bind salicylic acid; this suppresses their decatenation but not relaxation activity.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN Superhelicoidal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Biocatálisis , ADN/metabolismo , Humanos , Hidrólisis , Lisina/metabolismo , Mutación/genética , Proteínas Nucleares/química , Extractos Vegetales/metabolismo , Proteínas de Plantas/química , Unión Proteica , Ácido Salicílico/metabolismo
7.
Mol Plant Microbe Interact ; 29(9): 674-687, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27482822

RESUMEN

To assess the role of MORC1 in epigenetics in relation to plant immunity, genome-wide chromatin accessibility was compared between mock- or Pseudomonas syringae pv. tomato-inoculated wild type (WT) Arabidopsis, the morc1/2 double mutant, or both. Most changes in chromatin accessibility, scored by DNase I hypersensitive sites (DHSs), were located in the promoters of genes and transposable elements (TEs). Comparisons between morc1/2 and WT receiving the same treatment revealed differential DHSs (dDHSs) predominantly associated with heterochromatic TEs. By contrast, comparisons between mock- and P. syringae pv. tomato-inoculated plants from the same genotype showed dDHSs associated with biotic and abiotic stress-related genes; a smaller but significant population was in TEs. Moreover, many defense genes, including PR-1, PR-2, and PR-5, were proximal to P. syringae pv. tomato-induced, TE-associated dDHSs. A random subset of these defense genes showed moderately delayed or reduced expression or both in P. syringae pv. tomato-infected morc1/2 as compared with WT. MORC1 was physically bound to chromatin in a P. syringae pv. tomato infection-responsive manner at sites dispersed throughout the genome. Notably, silencing of TE-associated dDHSs proximal to these infection-induced, MORC1-interacting sites led to significant suppression of P. syringae pv. tomato-induced transcription of adjacent defense genes, including PR-1. These results provide evidence that MORC1 is associated with TEs and suggest that a subset of these TEs may help regulate their proximal defense genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Adenosina Trifosfatasas/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Cromatina/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética
8.
BMC Plant Biol ; 16(1): 232, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782807

RESUMEN

BACKGROUND: Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT: Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS: This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Animales , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Inmunidad Innata , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta
9.
Mol Med ; 21: 526-35, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101955

RESUMEN

Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.


Asunto(s)
Aspirina/farmacología , Proteína HMGB1/genética , Inflamación/genética , Ácido Salicílico/farmacología , Aspirina/química , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Proteína HMGB1/biosíntesis , Proteína HMGB1/química , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Mutación , Resonancia Magnética Nuclear Biomolecular , Ácido Salicílico/química
10.
Planta ; 241(1): 1-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25252816

RESUMEN

Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.


Asunto(s)
Capsicum/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Transducción de Señal/genética , Capsicum/metabolismo , Capsicum/microbiología , Muerte Celular/genética , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Xanthomonas campestris/fisiología
11.
Plant Physiol ; 164(2): 866-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24390392

RESUMEN

MORC1 and MORC2, two of the seven members of the Arabidopsis (Arabidopsis thaliana) Compromised Recognition of Turnip Crinkle Virus1 subfamily of microrchidia Gyrase, Heat Shock Protein90, Histidine Kinase, MutL (GHKL) ATPases, were previously shown to be required in multiple layers of plant immunity. Here, we show that the barley (Hordeum vulgare) MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37% to 48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knockdown of MORC in barley resulted in enhanced basal resistance and effector-triggered, powdery mildew resistance locus A12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f. sp. hordei), while MORC overexpression decreased resistance. Moreover, barley knockdown mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley versus Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss-of-transposon silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other's function. Together, these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Carmovirus/metabolismo , Resistencia a la Enfermedad/inmunología , Hordeum/enzimología , Hordeum/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Ascomicetos , Botrytis/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Elementos Transponibles de ADN/genética , ADN de Plantas/metabolismo , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas/genética , Hordeum/genética , Hordeum/microbiología , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Pseudomonas syringae/fisiología , Homología de Secuencia de Ácido Nucleico
12.
Planta ; 240(4): 827-39, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25074588

RESUMEN

MAIN CONCLUSION: Pepper CaMLO2 specifically interacts with CaCaM1 and translocates cytoplasmic CaCaM1 to the plasma membrane, leading to the suppression of Xanthomonas AvrBsT-triggered Ca (2+) influx, hypersensitive cell death and defense responses. Pathogen-induced cell death is closely linked with disease susceptibility and resistance in plants. Pepper (Capsicum annuum) mildew resistance locus O (CaMLO2) and calmodulin (CaCaM1) genes are required for disease-associated cell death and hypersensitive cell death, respectively. Here, we demonstrate that pathogen-responsive CaMLO2 interacts with CaCaM1 in yeast and in planta. Bimolecular fluorescence complementation and co-immunoprecipitation analyses confirm a specific interaction between CaMLO2 and CaCaM1 at the plasma membrane (PM) in plant cells. Subcellular localization analyses of CaCaM1 fused to green fluorescent protein reveals that treatment with Ca(2+) and co-expression with CaMLO2 induce translocation of cytosolic CaCaM1 to the PM where CaMLO2 is localized. Transient CaMLO2 expression negatively regulates CaCaM1 accumulation in Nicotiana benthamiana. Xanthomonas avrBsT-triggered Ca(2+) influx and hypersensitive cell death are disrupted by CaCaM1 and/or CaMLO2 expression. CaMLO2 silencing in pepper significantly enhances reactive oxygen species burst, cell death, and resistance responses to Xanthomonas campestris pv. vesicatoria Ds1 and Ds1 (avrBsT), which is accompanied by enhanced induction of CaCaM1, CaPR1 (PR-1), and CaPO2 (peroxidase). These results suggest that CaMLO2 interacts with CaCaM1 and suppresses AvrBsT-triggered cell death and defense responses.


Asunto(s)
Calmodulina/metabolismo , Capsicum/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Xanthomonas campestris/fisiología , Calmodulina/genética , Capsicum/inmunología , Muerte Celular , Resistencia a la Enfermedad , Expresión Génica , Silenciador del Gen , Genes Reporteros , Sitios Genéticos/genética , Cebollas/citología , Cebollas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión , Nicotiana/citología , Nicotiana/genética , Nicotiana/inmunología , Técnicas del Sistema de Dos Híbridos
13.
Plant Physiol ; 161(1): 384-96, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23093361

RESUMEN

Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-ß-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-ß-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants.


Asunto(s)
Capsicum/genética , Muerte Celular , Celulasa/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Inmunidad de la Planta , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Capsicum/inmunología , Capsicum/microbiología , Pared Celular/inmunología , Pared Celular/microbiología , Clostridium thermocellum/enzimología , Biología Computacional/métodos , Dexametasona/farmacología , Resistencia a la Enfermedad , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Cebollas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Proteoma/análisis , Solubilidad , Xanthomonas campestris/inmunología , Xanthomonas campestris/patogenicidad
14.
Plant Pathol J ; 40(2): 99-105, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606440

RESUMEN

Land plants produce glucose (C6H12O6) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

15.
PLoS One ; 19(1): e0296094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198474

RESUMEN

A strain (AAD16) of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin was isolated from field-collected Japanese rhinoceros beetle, Allomyrina dichotoma (L.) (Coleoptera: Scarabaeidae). Its virulence was compared with another strain (ARP14) recovered from a cadaver of Riptortus pedestris (F.) (Hemiptera: Alydidae) focusing on its effect on three coleopteran, i.e., Tenebrio molitor L., A. dichotoma, and Monochamus alternatus Hope. The LT50 value of T. molitor for two larval sizes, i.e., 16-18 and 22-24 mm, was 15.3 and 19.4% lower for strain AAD16 compared to strain ARP14, respectively. Furthermore, after 8 and 10 days of exposure, the mycosis rate of strain AAD16 was 1.3 and 1.2 times higher than that of strain ARP14 in the 16-18 and 22-24 mm larval sizes, respectively. The LT50 for M. alternatus larvae was 23.2% lower on strain AAD16 than on strain ARP14. In addition, the LT50 for M. alternatus adults was 47.1% lower for strain AAD16 compared to control. The mycosis rate of strain AAD16 on M. alternatus larvae was 1.8 higher than that of strain ARP14 after 120 hours of exposure. The strain AAD16 also showed higher larval mortality (90%) for A. dichotoma compared to strain ARP14 (45.0%) at 28 days after exposure. These results suggest that B. bassiana AAD16 can be a potential biological control agent against coleopteran pests.


Asunto(s)
Beauveria , Escarabajos , Heterópteros , Animales , Japón , Insectos , Larva
16.
Plants (Basel) ; 13(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794490

RESUMEN

Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by a growing body of contemporary research. Numerous studies have highlighted the beneficial aspects of endophytic colonization. This review aims to systematically organize information concerning the direct (nutrient acquisition and production of phytohormones) and indirect (resistance induction, antibiotic and secondary metabolite production, siderophore production, and mitigation of abiotic and biotic stresses) implications of endophytic colonization. Furthermore, a thorough discussion of these mechanisms is provided. Several challenges, including isolation complexities, classification of novel strains, and the impact of terrestrial location, vegetation type, and anthropogenic reluctance to use fungal entomopathogens, have been recognized as hurdles. However, recent advancements in biotechnology within microbial research hold promising solutions to many of these challenges. Ultimately, the current constraints delineate potential future avenues for leveraging endophytic fungal entomopathogens as dual microbial control agents.

17.
Mol Plant Microbe Interact ; 26(12): 1441-54, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23931712

RESUMEN

Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas campestris pv. vesicatoria as an interacting partner of CaHIR1 using yeast two-hybrid screening. Coimmunoprecipitation and bimolecular fluorescence complementation experiments revealed that Fha1 specifically interacts with CaHIR1 in planta. The endocytic tracker FM4-64 staining showed that the CaHIR1-Fha1 complex localizes in the endocytic vesicle-like structure. The X. campestris pv. vesicatoria Δfha1 mutant strain exhibited significantly increased surface adherence but reduced swarming motility. Mutation of fha1 inhibited the growth of X. campestris pv. vesicatoria and X. campestris pv. vesicatoria ΔavrBsT in tomato and pepper leaves, respectively, suggesting that Fha1 acts as a virulence factor in host plants. Transient expression of fha1 and also infiltration with purified Fha1 proteins induced disease-associated cell death response through the interaction with CaHIR1 and suppressed the expression of pathogenesis-related (PR) genes. Silencing of CaHIR1 in pepper significantly reduced ΔavrBsT growth and Fha1-triggered susceptibility cell death. Overexpression of fha1 in Arabidopsis retarded plant growth and triggered disease-associated cell death, resulting in altered disease susceptibility. Taken together, these results suggest that the X. campestris pv. vesicatoria virulence factor Fha1 interacts with CaHIR1, induces susceptibility cell death, and suppresses PR gene expression in host plants.


Asunto(s)
Capsicum/microbiología , Susceptibilidad a Enfermedades , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/genética , Secuencia de Aminoácidos , Anticuerpos , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/fisiología , Secuencia de Bases , Capsicum/genética , Capsicum/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/aislamiento & purificación , Expresión Génica , Hemaglutininas/genética , Hemaglutininas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/fisiología , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos , Virulencia , Factores de Virulencia , Xanthomonas campestris/patogenicidad , Xanthomonas campestris/fisiología
18.
Front Plant Sci ; 14: 1173695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377812

RESUMEN

In this study, we aimed to screen antagonistic microorganisms against Acidovorax citrulli, the causal agent of bacterial fruit blotch, which is known to induce sever diseases in cucurbit crops. From 240 bacterial strains isolated, only one unknown bacterial isolate, named YM002, showed significant antagonistic activity against A. citrulli KACC17909. Further experiments revealed that YM002 shows antagonistic activity against all tested A. citrulli strains, including KACC17000, KACC17001 and KACC17005, to different degrees. The phylogenetic analysis of 16S rRNA sequences identified YM002 as Paenibacillus tianmuensis. Importantly, pretreatment of cucumber (Cucumis sativus) leaves with YM002 enhanced disease resistance as observed by significantly reduced necrotic symptom development and bacterial growth. YM002-induced resistance accompanied by enhanced expression of defense-related genes, such as PAL1, PR1-1a and CTR1. Importantly, culture filtrate of YM002 significantly suppressed biofilm formation and swimming motility of A. citrulli, which is indispensable for its full virulence. In addition to its antagonistic activity, YM002 showed a various plant growth promotion (PGP)-related traits, such as production of ammonia production, amylase production, ACC deaminase production, inodole-3-acetic acid production, extracellular protease production, siderophore production, and zinc solubilization activities. Indeed, treatment of cucumber roots with YM002 significantly enhanced plant growth parameters, such as fresh and dry weight of leaves or roots. This study suggests the potential of YM002 as an effective PGPR with biological control activity against Acidovorax citrulli in cucumber plants.

19.
Mycobiology ; 51(3): 186-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359955

RESUMEN

In July 2021, wilting symptoms were observed in adult and seedling hemp (Cannabis sativa L. cv. Cherry Blossom) plants grown in a greenhouse. As the disease progressed, yellowing and wilting symptoms on the leaves developed, resulting in whole plant death. In seedling plants, typical damping-off symptoms were observed. To identify the pathogen, the roots of diseased plants were sampled, surface sterilized, and cultured on potato dextrose agar (PDA) media. From the culture, 4 different fungal isolates were recovered and purely cultured. Each fungal isolate showed distinct growth shapes and color development on malt extract agar, oatmeal agar, sabouraud dextrose agar, and PDA media. Microscopic observation and molecular identification using ribosomal DNA internal transcribed spacer sequencing identified them as 3 Fusarium spp. and 1 Thielaviopsis paradoxa. Additional sequencing of elongation factor 1-alpha and ß-tubulin regions of 3 Fusarium spp. revealed that 2 of them are Fusarium solani, and the other one is Fusarium proliferatum. To examine which isolate can act as a causal agent of wilt disease of hemp, each isolate was tested for their pathogenicity. In the pathogenicity test, F. solani AMCF1 and AMCF2, and F. proliferatum AMCF3, but not T. paradoxa AMCF4, were able to cause wilting disease in hemp seedlings. Therefore, we report that F. solani AMCF1 and AMCF2, and F. proliferatum AMCF3 as causal agents of Fusarium wilt of hemp plants. To our knowledge, this is the first report of the wilt disease of C. sativa L. caused by Fusarium spp. in Korea.

20.
Planta ; 235(6): 1369-82, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22210598

RESUMEN

In plants, biotic and abiotic stresses regulate the expression and activity of various peroxidase isoforms. Capsicum annuum EXTRACELLULAR PEROXIDASE 2 (CaPO2) was previously shown to play a role in local and systemic reactive oxygen species bursts and disease resistance during bacterial pathogen infection. Here, we report CaPO2 expression patterns and functions during conditions of biotic and abiotic stress. In pepper plants, CaPO2 expression was strongly induced by abscisic acid, but not by defense-related plant hormones such as salicylic acid, ethylene and jasmonic acid. CaPO2 was also strongly induced by abiotic and biotic stress treatments, including drought, cold, high salinity and infection by the hemibiotrophic fungal pathogen Colletotrichum coccodes. Loss-of-function of CaPO2 in virus-induced gene silenced pepper plants led to increased susceptibility to salt- and osmotic-induced stress. In contrast, CaPO2 overexpression in transgenic Arabidopsis thaliana plants conferred enhanced tolerance to high salt, drought, and oxidative stress, while also enhancing resistance to infection by the necrotrophic fungal pathogen Alternaria brassicicola. Taken together, these results provide evidence for the involvement of pepper extracellular peroxidase CaPO2 in plant defense responses to various abiotic stresses and plant fungal pathogens.


Asunto(s)
Capsicum/enzimología , Capsicum/microbiología , Colletotrichum/fisiología , Resistencia a la Enfermedad , Estrés Oxidativo , Peroxidasa/metabolismo , Estrés Fisiológico , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Alternaria/efectos de los fármacos , Alternaria/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/fisiología , Capsicum/fisiología , Colletotrichum/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Sequías , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/enzimología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas/genética , Ósmosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peronospora/efectos de los fármacos , Peronospora/fisiología , Peroxidasa/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA