Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Metabolomics ; 19(9): 80, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690093

RESUMEN

INTRODUCTION: Lung cancer is one of the most malignant cancers and the leading cause of cancer-related deaths worldwide, while acquired chemoresistance would represent a major problem in the treatment of non-small cell lung cancer (NSCLC) because of the reduced treatment effect and increased rates of recurrence. METHODS: To establish the chemoresistant NSCLC cells, doxorubicin was treated to A549 cells over 3 months at gradually increasing concentrations from 0.03 to 0.5 µM. Real-time PCR and Western blotting were employed for investigating mRNA and protein expression of the glutathione peroxidase (GPX) protein family and multidrug resistance protein 1 (MRP1) in A549 and A549/CR cells. We also employed gas chromatography mass-spectrometry and nano electrospray ionization mass-spectrometry coupled with multivariate statistical analysis to characterize the unique metabolic and lipidomic profiles of chemoresistant NSCLC cells in order to identify potential therapeutic targets. RESULTS: Reactive oxygen species levels were decreased, and mRNA and protein levels of GPX2 and multidrug resistance protein 1 (MRP1) were increased in A549/CR. We identified 87 metabolites and intact lipid species in A549 and A549/CR. Among these metabolites, lactic acid, glutamic acid, glycine, proline, aspartic acid, succinic acid, and ceramide, alongside the PC to PE ratio, and arachidonic acid-containing phospholipids were suggested as characteristic features of chemoresistant NSCLC cells (A549/CR). CONCLUSIONS: This study reveals characteristic feature differences between drug-resistance NSCLC cells and their parental cells. We suggest potential therapeutic targets in chemoresistant NSCLC. Our results provide new insight into metabolic and lipidomic alterations in chemoresistant NSCLC. This could be used as fundamental information to develop therapeutic strategies for the treatment of chemoresistant NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Lipidómica , Metabolómica
2.
FASEB J ; 36(2): e22127, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066937

RESUMEN

Lung cancer has the highest incidence and mortality rates among all types of cancer worldwide, and 80%-85% of patients with lung cancer are diagnosed with non-small cell lung cancer (NSCLC), which has 5-year survival rate of only 5% at advanced stages. Development of new therapeutic agents and strategies is required to enhance the treatment efficiency in patients with NSCLC. Metabolic alterations and anticancer effects of plant hormones and their derivatives have not been investigated in NSCLC in vitro and in vivo. The present study investigated the cytotoxic effects of 11 plant hormones and their derivatives against NSCLC cell lines; ortho-topolin riboside (oTR) showed the highest cytotoxicity among all tested compounds against NSCLC cells. Alteration of metabolites and lipids was investigated using gas chromatography-mass spectrometry and nano electrospray ionization-mass spectrometry in oTR-treated NSCLC cells and a xenograft mouse model. oTR reduced amino acid and pyrimidine synthesis in NSCLC cells and xenograft tumors. Moreover, oTR reduced glycolytic function and decreased mitochondrial respiration function by inhibiting glutamine and fatty acid oxidation. Increased levels of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine species suggested that oTR might act as a fatty acid oxidation inhibitor. In addition, the increased level of phosphatidylserine species implied that phosphatidylserine-mediated apoptosis occurred in oTR-treated NSCLC cells and xenograft tumor. The antiproliferative and apoptotic effects of oTR were mediated by the reduced p-ERK and p-AKT levels and increased cleaved Caspase-3 levels, respectively. This is the first study to investigate the metabolic alterations and anticancer activity of oTR in in vitro and in vivo models of NSCLC. Our results provide basis for the development of oTR-based therapeutic agent for patients with NSCLC.


Asunto(s)
Antineoplásicos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Citocininas/metabolismo , Neoplasias Pulmonares/metabolismo , Metaboloma/fisiología , Células A549 , Animales , Apoptosis/fisiología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo
3.
BMC Plant Biol ; 22(1): 545, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434529

RESUMEN

BACKGROUND: Lemna species are cosmopolitan floating plants that have great application potential in the food/feed, pharmaceutical, phytoremediation, biofuel, and bioplastic industries. In this study, the effects of exogenous melatonin (0.1, 1, and 10 µM) on the growth and production of various bioactive metabolites and intact lipid species were investigated in Lemna aequinoctialis culture. RESULTS: Melatonin treatment significantly enhanced the growth (total dry weight) of the Lemna aequinoctialis culture. Melatonin treatment also increased cellular production of metabolites including ß-alanine, ascorbic acid, aspartic acid, citric acid, chlorophyll, glutamic acid, phytosterols, serotonin, and sucrose, and intact lipid species; digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylinositols, and sulfoquinovosyldiacylglycerols. Among those metabolites, the productivity of campesterol (1.79 mg/L) and stigmasterol (10.94 mg/L) were the highest at day 28, when 10 µM melatonin was treated at day 7. CONCLUSION: These results suggest that melatonin treatment could be employed for enhanced production of biomass or various bioactive metabolites and intact lipid species in large-scale L. aequinoctialis cultivation as a resource for food, feed, and pharmaceutical industries.


Asunto(s)
Araceae , Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Lipidómica , Biodegradación Ambiental , Lípidos
4.
Bioprocess Biosyst Eng ; 44(7): 1433-1439, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33656615

RESUMEN

Biodiesel contains methyl or ethyl esters of long-chain fatty acids and has recently attracted increasing attention. Microalgae have emerged as a sustainable biodiesel production system owing to their photosynthetic potential. However, the conversion of microalgal biomass to biodiesel requires high energy and is costly. This study aimed to overcome the high cost of the pretreatment process by generating cyanobacteria converting fatty acids to fatty acids methyl ester (FAME) in vivo by introducing the fatty acid methyl ester transferase (FAMT) gene. Two FAMT genes from Drosophila melanogaster and Arabidopsis thaliana were selected and their codons were optimized for insertion in the Synechocystis sp. PCC6803 genome through homologous recombination, respectively. FAMT mRNA and protein expression levels were confirmed through reverse-transcription PCR and western blot analysis, respectively. Furthermore, heterologous expression of the FAMT genes yielded FAME, which was analyzed by gas chromatography. We found that FAMT transformants can be further metabolically optimized and applied for commercial production of biodiesel.


Asunto(s)
Biocombustibles , Metiltransferasas/química , Microalgas/metabolismo , Fotosíntesis , Synechocystis/metabolismo , Animales , Arabidopsis/metabolismo , Biomasa , Cromatografía de Gases , Codón , Drosophila melanogaster/metabolismo , Ácidos Grasos/metabolismo , Genoma Bacteriano , Genoma de Planta , Insectos , Plásmidos/metabolismo , ARN Mensajero/metabolismo
5.
J Appl Toxicol ; 40(7): 1004-1013, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32084307

RESUMEN

Amiodarone is known to induce hepatic injury in some recipients. We applied an untargeted metabolomics approach to identify endogenous metabolites with potential as biomarkers for amiodarone-induced liver injury. Oral amiodarone administration for 1 week in rats resulted in significant elevation of acylcarnitines and phospholipids in the liver. Hepatic short- and medium-chain acylcarnitines were dramatically increased in a dose-dependent manner, while the serum levels of these acylcarnitines did not change substantially. In addition, glucose levels were significantly increased in both the serum and liver. Gene expression profiling showed that the hepatic mRNA levels of Cpt1, Cpt2, and Acat1 were significantly suppressed, whereas those of Acot1, Acly, Acss2, and Acsl3 were increased. These results suggest that hepatic acylcarnitines and glucose levels might be increased due to disruption of mitochondrial function and suppression of glucose metabolism. Perturbation of energy metabolism might be associated with amiodarone-induced hepatotoxicity.


Asunto(s)
Amiodarona/toxicidad , Biomarcadores/metabolismo , Carnitina/sangre , Carnitina/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , ARN Mensajero , Administración Oral , Amiodarona/administración & dosificación , Animales , Variación Genética , Masculino , Metabolómica , Ratas , Ratas Sprague-Dawley
6.
Molecules ; 25(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050669

RESUMEN

Soybean (Glycine max) is a major crop cultivated in various regions and consumed globally. The formation of volatile compounds in soybeans is influenced by the cultivar as well as environmental factors, such as the climate and soil in the cultivation areas. This study used gas chromatography-mass spectrometry (GC-MS) combined by headspace solid-phase microextraction (HS-SPME) to analyze the volatile compounds of soybeans cultivated in Korea, China, and North America. The multivariate data analysis of partial least square-discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA) were then applied to GC-MS data sets. The soybeans could be clearly discriminated according to their geographical origins on the PLS-DA score plot. In particular, 25 volatile compounds, including terpenes (limonene, myrcene), esters (ethyl hexanoate, butyl butanoate, butyl prop-2-enoate, butyl acetate, butyl propanoate), aldehydes (nonanal, heptanal, (E)-hex-2-enal, (E)-hept-2-enal, acetaldehyde) were main contributors to the discrimination of soybeans cultivated in China from those cultivated in other regions in the PLS-DA score plot. On the other hand, 15 volatile compounds, such as 2-ethylhexan-1-ol, 2,5-dimethylhexan-2-ol, octanal, and heptanal, were related to Korean soybeans located on the negative PLS 2 axis, whereas 12 volatile compounds, such as oct-1-en-3-ol, heptan-4-ol, butyl butanoate, and butyl acetate, were responsible for North American soybeans. However, the multivariate statistical analysis (PLS-DA) was not able to clearly distinguish soybeans cultivated in Korea, except for those from the Gyeonggi and Kyeongsangbuk provinces.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/estadística & datos numéricos , Glycine max/metabolismo , Compuestos Orgánicos Volátiles/análisis , China , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis de los Mínimos Cuadrados , Análisis Multivariante , América del Norte , República de Corea , Microextracción en Fase Sólida/métodos , Glycine max/química
7.
Anal Bioanal Chem ; 411(21): 5423-5436, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161326

RESUMEN

It is necessary to characterize and classify neural stem cells (NSCs) and differentiated cells (DCs) for potential use of NSC to treat neurodegenerative diseases. We therefore performed an analysis of NSCs and DCs using gas chromatography mass spectrometry (GC-MS) and direct infusion mass spectrometry (DI-MS) with elaborate multivariate statistical analysis for the characterization and classification of rat NSCs and DCs. GC-MS and DI-MS detected a total of 92 metabolites and lipids in NSCs and DCs, and the levels of 72 of them differed significantly between NSCs and DCs. The optimal model for partial least squares (PLS) discriminant analysis was constructed by applying 3 and 2 PLS components with a unit-variance scaling method for classifying NSCs and DCs based on the data obtained in the GC-MS and DI-MS analyses, respectively. The obtained results from PCA and PLS-DA suggest that creatinine, lactic acid, lysine, glutamine, glycine, pyroglutamic acid, PG 18:1/20:2, PS 18:0/20:2, PI 18:0/20:3, PC 16:0/20:4, PI 16:0/20:4, and PI 18:1/20:4 were the main contributors that provided distinct characteristics of NSCs and DCs. The results of this study suggest objective and complementary criteria for the characterization and classification of NSCs and DCs for potential clinical applications. Graphical abstract.


Asunto(s)
Diferenciación Celular , Metabolismo de los Lípidos , Células-Madre Neurales/clasificación , Células-Madre Neurales/citología , Animales , Células Cultivadas , Análisis Discriminante , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis de los Mínimos Cuadrados , Espectrometría de Masas/métodos , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley
8.
J Biochem Mol Toxicol ; 31(3)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27870266

RESUMEN

The anticancer-drug cyclophosphamide (CP) is known to have nephrotoxicity. The aim of this study was to identify urinary biomarkers indicating CP-induced nephrotoxicity. We investigated the urine metabolic profiles using nuclear magnetic resonance spectrometry of rats administered with single high-doses of CP (0, 30, and 100 mg/kg body weight) and daily low-doses over a 4-week period (0, 1, 3, and 10 mg/kg body weight). Among 18 identified urinary metabolites, 2-oxoglutarate, citrate, hippurate, formate, valine, and alanine for short-term and 2-oxoglutarate, citrate, hippurate, isoleucine, leucine, allantoin, valine, and lysine for long-term were selected as potential biomarkers. Pathway-enrichment analysis suggested that the urinary metabolism of CP is related to valine, leucine, and isoleucine biosynthesis; taurine and hypotaurine metabolism; glyoxylate and dicarboxylate metabolism; citrate cycle; and alanine, aspartate, and glutamate metabolism, with high pathway impact. The potential biomarkers obtained in this study could be used to monitor CP-induced nephrotoxicity relative to dose and treatment time.


Asunto(s)
Biomarcadores/orina , Ciclofosfamida/efectos adversos , Riñón/efectos de los fármacos , Metabolómica , Neoplasias/orina , Animales , Ciclofosfamida/administración & dosificación , Humanos , Isoleucina/orina , Riñón/patología , Leucina/orina , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ratas , Taurina/análogos & derivados , Taurina/orina , Valina/orina
9.
Molecules ; 22(9)2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892002

RESUMEN

This article aims to understand the global and longitudinal trends of research on Panax ginseng. We used bibliometrics to analyze 3974 papers collected from the Web of ScienceTM Core Collection database during 1959-2016. The number of publications showed a steady growth before 2000 and exponentially increased in stage III (2000-2016, about 86% of the papers were published). Research on P. ginseng was conducted in 64 countries, mainly in Asia; in particular, 41% and 28% of the publications were from South Korea and China, respectively. The institutions from South Korea and China had high publication output and close cooperation and provided the majority of financial support. All top 10 authors and four of the top 20 journals in terms of number of publications originated from South Korea. The leading research subjects were pharmacology (39%), plant science (26%), and integrative complementary medicine (19%). The hotspot of P. ginseng research transformed from basic science to application, and multidisciplinary sciences will play a substantial role in the future. This study provides a comprehensive analysis to elucidate the global distribution, collaboration patterns, and research trends in the P. ginseng domain.


Asunto(s)
Investigación Biomédica/tendencias , Terapias Complementarias/tendencias , Panax/química , Farmacología/tendencias , Investigación Biomédica Traslacional/tendencias , Bibliometría , China , Humanos , Factor de Impacto de la Revista , Panax/metabolismo , Publicaciones Periódicas como Asunto , República de Corea
10.
Toxicol Appl Pharmacol ; 307: 10-18, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27431321

RESUMEN

Triazines are herbicides that are widely used worldwide, and we previously observed that the maternal exposure of mice to simazine (50 or 500µg/kg) resulted in smaller ovaries and uteri of their female offspring. Here, we investigated the underlying mechanism that may account for the reproductive dysfunction induced by simazine. We found that following maternal exposure, simazine is transmitted to the offspring, as evidenced by its presence in the offspring ovaries. Analyses of the simazine-exposed offspring revealed that the expression of the relaxin hormone receptor, relaxin-family peptide receptor 1 (RXFP1), prominently decreased in their ovaries and uteri. In addition, downstream target genes of the relaxin pathway including nitric oxide (NO) synthase 2 (Nos2), Nos3, matrix metallopeptidase 9 (Mmp9), and vascular endothelial growth factor (Vegf) were downregulated in their ovaries. Moreover, AKT and extracellular signal-regulated kinases (ERK) levels and their phosphorylated active forms decreased in simazine-exposed ovaries. In vitro exposure of the human ovarian granulosa cells (KGN) and uterine endometrium cells (Hec-1A) to very low concentrations (0.001 to 1nM) of triazines including atrazine, terbuthylazine, and propazine repressed NO production with a concurrent reduction in RXFP1, NOS2, and NOS3. The inhibitory action of triazines on NO release was dependent on RXFP1, phosphoinositol 3-kinase (PI3K)/AKT, and ERK. Radioligand-binding assay also confirmed that triazines competitively inhibited the binding of relaxin to its receptor. Therefore, the present study suggests that triazine herbicides act as endocrine disrupters by interfering with relaxin hormone signaling. Thus, further evaluation of their impact on human health is imperative.


Asunto(s)
Herbicidas/toxicidad , Óxido Nítrico/metabolismo , Relaxina/antagonistas & inhibidores , Triazinas/toxicidad , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Células de la Granulosa/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Transducción de Señal/efectos de los fármacos , Útero/metabolismo
11.
Anal Bioanal Chem ; 408(8): 2109-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26800980

RESUMEN

Korean ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs used in Asia, including Korea and China. In the present study lipid profiling of two officially registered cultivars (P. ginseng 'Chunpoong' and P. ginseng 'Yunpoong') was performed at different cultivation ages (5 and 6 years) and on different parts (tap roots, lateral roots, and rhizomes) using nano-electrospray ionization-mass spectrometry (nanoESI-MS). In total, 30 compounds including galactolipids, phospholipids, triacylglycerols, and ginsenosides were identified. Among them, triacylglycerol 54:6 (18:2/18:2/18:2), phosphatidylglycerol 34:3 (16:0/18:3), monogalactosyldiacylglycerol 36:4 (18:2/18:2), phosphatidic acid species 36:4 (18:2/18:2), and 34:1 (16:0/18:1) were selected as biomarkers to discriminate cultivars, cultivation ages, and parts. In addition, an unknown P. ginseng sample was successfully predicted by applying validated partial least squares projection to latent structures regression models. This is the first study regarding the identification of intact lipid species from P. ginseng and to predict cultivars, cultivation ages, and parts of P. ginseng using nanoESI-MS-based lipidomic profiling with a multivariate statistical analysis.


Asunto(s)
Ginsenósidos/análisis , Lípidos/análisis , Panax/química , Extractos Vegetales/química , Análisis de los Mínimos Cuadrados , Espectrometría de Masa por Ionización de Electrospray
12.
Molecules ; 21(3): 363, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26999095

RESUMEN

The enantiomeric distribution and profile of volatiles in plants, which affect the biological and organoleptic properties, can be varied depending on extraction methods as well as their cultivars. The secondary volatile components of the needles of three conifer cultivars (Chamaecyparispisifera, Chamaecyparisobtusa, and Thujaorientalis) were compared. Furthermore, the effects of three different extraction methods--solid-phase microextraction (SPME), steam distillation (SD), and solvent extraction (SE)--on the composition and enantiomeric distribution of those volatiles were elucidated. Monoterpene hydrocarbons predominated in all samples, and the compositions of sesquiterpenes and diterpenes differed according to the cultivar. In particular, the yields of oxygenated monoterpenes and sesquiterpenes were greatest for SD, whereas those of sesquiterpenes and diterpenes were highest for SE. On the other hand, more monoterpenes with higher volatility could be obtained with SPME and SD than when using SE. In addition, the enantiomeric composition of nine chiral compounds found in three cultivars differed according to their chemotype. There were also some differences in the yielded oxygenated monoterpenes and sesquiterpene hydrocarbons, but not monoterpene hydrocarbons, according to the extraction method. These results demonstrate that the extraction methods used as well as the cultivars influence the measured volatile profiles and enantiomeric distribution of coniferous needle extracts.


Asunto(s)
Hidrocarburos/química , Sesquiterpenos/química , Tracheophyta/química , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/aislamiento & purificación , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Sesquiterpenos/aislamiento & purificación , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/aislamiento & purificación
13.
Environ Microbiol ; 17(11): 4484-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25970691

RESUMEN

Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway.


Asunto(s)
Beauveria/metabolismo , Calmodulina/metabolismo , Insectos/microbiología , Fenilanina Amoníaco-Liasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calmodulina/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Cinamatos/química , Respuesta al Choque por Frío , ADN de Hongos/genética , Respuesta al Choque Térmico , Datos de Secuencia Molecular , Fenilalanina/química , Fenilanina Amoníaco-Liasa/genética , Unión Proteica , Alineación de Secuencia , Transducción de Señal/fisiología , Sulfonamidas/farmacología
14.
Toxicol Appl Pharmacol ; 288(2): 213-22, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26222700

RESUMEN

A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague-Dawley (SD) rats for 28days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence of compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity.


Asunto(s)
Ácidos y Sales Biliares/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Hígado/metabolismo , Metabolómica , Tioacetamida/toxicidad , Animales , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Circulación Enterohepática , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metabolómica/métodos , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Tioacetamida/administración & dosificación , Factores de Tiempo , Regulación hacia Arriba
15.
Biosci Biotechnol Biochem ; 79(6): 1011-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25666914

RESUMEN

ß-Thujaplicin, one of the major constituents in Chamaecyparis obtusa, has been demonstrated to exert different health beneficial efficacy, but the role of ß-thujaplicin in regulating mammary tumorigenesis has not been investigated. In this study, we found that ß-thujaplicin significantly suppressed the proliferation through arresting the cell cycle transition from G1 to S phase as well as inhibited the expression of cell cycle-related proteins, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in MCF-7 and T47D luminal subtype breast cancer cells. In addition, estrogen receptor α (ER-α) was down-regulated by ß-thujaplicin via enhanced proteolysis by ubiquitination, which led to cell growth inhibition. These results suggest that ß-thujaplicin may be considered as a potent agent regulating the hormone sensitive mammary tumorigenesis.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Monoterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Tropolona/análogos & derivados , Carcinogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Proteolisis/efectos de los fármacos , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Tropolona/farmacología
16.
Molecules ; 20(10): 18066-82, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26445036

RESUMEN

Chamaecyparis obtusa (CO) belongs to the Cupressaceae family, and it is found widely distributed in Japan and Korea. In this study, the anti-proliferative activities of the methanol and water extracts of CO leaves against a human colorectal cancer cell line (HCT116) were investigated. The methanol extract of CO leaves, at a concentration of 1.25 µg/mL, exhibited anti-proliferative activity against HCT116 cells, while displaying no cytotoxicity against Chang liver cells. Comparative global metabolite profiling was performed using gas chromatography-mass spectrometry coupled with multivariate statistical analysis, and it was revealed that anthricin was the major compound contributing to the anti-proliferative activity. The activation of c-Jun N-terminal kinases played a key role in the apoptotic effect of the methanol extract of CO leaves in HCT116 human colon cancer cells. These results suggest that the methanol extract and anthricin derived from CO leaves might be useful in the development of medicines with anti-colorectal cancer activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Chamaecyparis/química , Neoplasias Colorrectales/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Extractos Vegetales/química , Antineoplásicos Fitogénicos/química , Apoptosis , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Células HCT116 , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metanol/química , Metanol/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Transducción de Señal/efectos de los fármacos
17.
BMC Complement Altern Med ; 14: 455, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25418343

RESUMEN

BACKGROUND: Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. METHODS: Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy. Lipid accumulation in the cells was analyzed by Oil Red O staining. RESULTS: The PLS-DA clearly distinguished P. ginseng berry extract (PGBE) according to the partial ripe (PR), ripe(R) and fully ripe (FR) stage. Lipid accumulation of PGBE was examined by measuring triglyceride content and Oil-Red O staining. These results suggested that the FR stage of PGBE decrease in lipid accumulation during adipocyte differentiation and the amount of threonine, asparagine, fumarate, tyraine, tyrosine, and phenylalanine increased with longer ripening of ginseng berries. CONCLUSION: Metabolite profiling of P. ginseng was identified by 1H NMR spectra. P. ginseng extract efficiently inhibits adipogenesis in 3 T3-L1 adipocytes concluded that the P. ginseng has the antiobesity properties.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Frutas/química , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/metabolismo , Panax/química , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Ratones , Espectroscopía de Protones por Resonancia Magnética/métodos , República de Corea , Triglicéridos/metabolismo
18.
Chem Biol Interact ; 391: 110900, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325522

RESUMEN

Lung cancer is a highly prevalent and lethal malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of cancer-related deaths. In this study, the effects of co-treatment with melatonin and ortho-topolin riboside (oTR) on the cell viability and alteration of metabolites and transcripts were investigated in NSCLC cells using gas chromatography-mass spectrometry (GC-MS) and next-generation sequencing (NGS). The co-treatment of melatonin and oTR exhibited synergistic effects on the reduction of cell viability and alteration of metabolic and transcriptomic profiles in NSCLC cells. We observed that the co-treatment inhibited glycolytic function and mitochondria respiration, and downregulated glycine, serine and threonine metabolism alongside tyrosine metabolism in NSCLC cells. In the glycine, serine and threonine metabolism pathway, the co-treatment resulted in a significant 8.4-fold reduction in the expression level of the SDS gene, which encodes the enzyme responsible for the breakdown of serine to pyruvate. Moreover, co-treatment decreased the gene expression of TH, DDC, and CYP1A1 in tyrosine metabolism. Additionally, we observed that the co-treatment resulted in a significant 146.9-fold reduction in the expression of the DISC1 gene. The alteration in metabolites and transcript expressions might provide information to explain the cytotoxicity of co-treatment of melatonin and oTR in NSCLC cells. Our study presents insights into the synergistic anticancer effect of the co-treatment of melatonin and oTR, which could be a potential future therapeutic strategy for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Citocininas , Neoplasias Pulmonares , Melatonina , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Melatonina/farmacología , Melatonina/uso terapéutico , Supervivencia Celular , Metaboloma , Glicina/metabolismo , Glicina/farmacología , Glicina/uso terapéutico , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Línea Celular Tumoral
19.
Chem Biol Interact ; 398: 111089, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823535

RESUMEN

Radio-resistant triple negative breast cancer (TNBC) is resistant to conventional drugs and radiation therapy. ortho-topolin riboside (oTR) has been evaluated for its anticancer activity in several types of cancer cells. However, its anti-proliferative activity in radio-resistant TNBC cells has not yet been reported. Therefore, we investigated the anti-proliferative activity of oTR in radio-resistant TNBC cells, and performed metabolome, lipidome, transcriptome, and proteome profiling to reveal the mechanisms of the anticancer activity of oTR. oTR showed cytotoxicity against radio-resistant TNBC cells with an inhibitory concentration (IC50) value of 7.78 µM. Significantly decreased (p value < 0.05) basal and compensatory glycolysis were observed in the oTR-treated group than untreated group. Mitochondrial spare respiratory capacity, which is relevant to cell fitness and flexibility, was significantly decreased (p value < 0.05) in the oTR-treated group. The major metabolic pathways significantly altered by oTR according to metabolome, transcriptome, and proteome profiles were the glycerolipid/glycerophospholipid pathway (log2(FC) of MGLL = -0.13, log2(FC) of acylglycerol lipase = -1.35, log2(FC) of glycerol = -0.81), glycolysis (log2(FC) of EGLN1 = 0.16, log2(FC) of EGLN1 = 0.62, log2(FC) of glucose = -0.76, log2(FC) of lactate = -0.81), and kynurenine pathway (log2(FC) of KYNU = 0.29, log2(FC) of kynureninase = 0.55, log2(FC) of alanine = 0.72). Additionally, proline metabolism (log2(FC) of PYCR1 = -0.17, log2(FC) of proline = -0.73) was significantly altered in the metabolomic and transcriptomic profiles. The MAPK signaling pathway (log2(FC) of CCN1 = -0.15, log2(FC) of CCN family member 1 = -1.02) and Rap 1 signaling pathway (log2(FC) of PARD6B = -0.28, log2(FC) of PAR6B = -3.13) were also significantly altered in transcriptomic and proteomic profiles. The findings of this study revealed that oTR has anticancer activity in radio-resistant TNBC cells by affecting various metabolic pathways, suggesting the potential of oTR as a novel anticancer agent for radio-resistant TNBC patients.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Femenino , Proliferación Celular/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Glucólisis/efectos de los fármacos , Metaboloma/efectos de los fármacos , Multiómica
20.
Gut Pathog ; 16(1): 44, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187879

RESUMEN

BACKGROUND: While significant research exists on gut microbiota changes after anti-tumor necrosis factor-alpha (anti TNF-α) therapy for ulcerative colitis, little is known about the longitudinal changes related to the effects of anti TNF-α. This study aimed to investigate the dynamics of gut microbiome changes during anti TNF-α (adalimumab) therapy in patients with ulcerative colitis (UC). RESULTS: The microbiota composition was affected by the disease severity and extent in patients with UC. Regardless of clinical remission status at each time point, patients with UC exhibited microbial community distinctions from healthy controls. Distinct amplicon sequence variants (ASVs) differences were identified throughout the course of Adalimumab (ADA) treatment at each time point. A notable reduction in gut microbiome dissimilarity was observed only in remitters. Remitters demonstrated a decrease in the relative abundances of Burkholderia-Caballeronia-Paraburkholderia and Staphylococcus as the treatment progressed. Additionally, there was an observed increase in the relative abundances of Bifidobacterium and Dorea. Given the distribution of the 48 ASVs with high or low relative abundances in the pre-treatment samples according to clinical remission at week 8, a clinical remission at week 8 with a sensitivity and specificity of 72.4% and 84.3%, respectively, was predicted on the receiver operating characteristic curve (area under the curve, 0.851). CONCLUSIONS: The gut microbiota undergoes diverse changes according to the treatment response during ADA treatment. These changes provide insights into predicting treatment responses to ADA and offer new therapeutic targets for UC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA