Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chemistry ; 19(46): 15545-55, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24115151

RESUMEN

The Y-shaped, low molecular mass, hole-conductor (HC), acidic coadsorbents 4-{3,7-bis[4-(2-ethylhexyloxy)phenyl]-10H-phenothiazin-10-yl}benzoic acid (PTZ1) and 4-{3,7-bis[4-(2-ethylhexyloxy)phenyl]-10H-phenothiazin-10-yl}biphenyl-4-carboxylic acid (PTZ2) were developed. Owing to their tuned and negative-shifted HOMO levels (vs. NHE), they were used as HC coadsorbents in dye-sensitized solar cells (DSSCs) to improve cell performance through desired cascade-type hole-transfer processes. Their detailed functions as HC coadsorbents in DSSCs were investigated to obtain evidence for the desired cascade-type hole-transfer processes. They have multiple functions, such as preventing π-π stacking of dye molecules, harvesting light of shorter wavelengths, and faster dye regeneration. By using PTZ2 as the tailor-made HC coadsorbent on the TiO2 surface with the organic dye NKX2677, an extremely high conversion efficiency of 8.95 % was achieved under 100 mW cm(-2) AM 1.5G simulated light (short-circuit current JSC =16.56 mA cm(-2) , open-circuit voltage VOC =740 mV, and fill factor of 73 %). Moreover, JSC was increased by 13 %, VOC by 27 % and power-conversion efficiency by 49 % in comparison to an NKX2677-based DSSC without an HC coadsorbent. This is due to the HC coadsorbent having a HOMO energy level well matched to that of the NKX-2677 dye to induce the desired cascade-type hole-transfer processes, which are associated with a slower charge recombination, fast dye regeneration, effective screening of liquid electrolytes, and an induced negative shift of the quasi-Fermi level of the electrode. Thus, this new class of Y-shaped, low molecular weight, organic, HC coadsorbents based on phenothiazine carboxylic acid derivatives hold promise for highly efficient organic DSSCs.

3.
Nat Commun ; 7: 11943, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27324578

RESUMEN

Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method to overcome this contradiction by incorporating a hybrid conductive distributed Bragg reflector on the back side of the transparent conducting substrate for the front photoelectrochemical electrode, which functions as both an optical filter and a conductive counter-electrode of the rear dye-sensitized solar cell. The hybrid conductive distributed Bragg reflectors were designed to be transparent to the long-wavelength part of the incident solar spectrum (λ>500 nm) for the rear solar cell, while reflecting the short-wavelength photons (λ<500 nm) which can then be absorbed by the front photoelectrochemical electrode for enhanced photocurrent generation.

4.
Sci Adv ; 2(6): e1501459, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27386557

RESUMEN

Metal-free carbon-based electrocatalysts for dye-sensitized solar cells (DSSCs) are sufficiently active in Co(II)/Co(III) electrolytes but are not satisfactory in the most commonly used iodide/triiodide (I(-)/I3 (-)) electrolytes. Thus, developing active and stable metal-free electrocatalysts in both electrolytes is one of the most important issues in DSSC research. We report the synthesis of edge-selenated graphene nanoplatelets (SeGnPs) prepared by a simple mechanochemical reaction between graphite and selenium (Se) powders, and their application to the counter electrode (CE) for DSSCs in both I(-)/I3 (-) and Co(II)/Co(III) electrolytes. The edge-selective doping and the preservation of the pristine graphene basal plane in the SeGnPs were confirmed by various analytical techniques, including atomic-resolution transmission electron microscopy. Tested as the DSSC CE in both Co(bpy)3 (2+/3+) (bpy = 2,2'-bipyridine) and I(-)/I3 (-) electrolytes, the SeGnP-CEs exhibited outstanding electrocatalytic performance with ultimately high stability. The SeGnP-CE-based DSSCs displayed a higher photovoltaic performance than did the Pt-CE-based DSSCs in both SM315 sensitizer with Co(bpy)3 (2+/3+) and N719 sensitizer with I(-)/I3 (-) electrolytes. Furthermore, the I3 (-) reduction mechanism, which has not been fully understood in carbon-based CE materials to date, was clarified by an electrochemical kinetics study combined with density functional theory and nonequilibrium Green's function calculations.


Asunto(s)
Colorantes , Grafito/química , Yodo/química , Nanoestructuras/química , Selenio/química , Energía Solar , Algoritmos , Catálisis , Cobalto/química , Electrodos , Electrólitos , Modelos Moleculares , Modelos Teóricos , Oxidación-Reducción
5.
ACS Appl Mater Interfaces ; 7(40): 22213-7, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26352372

RESUMEN

Novel carbazole-based hole-transporting materials (HTMs), including extended π-conjugated central core units such as 1,4-phenyl, 4,4'-biphenyl, or 1,3,5-trisphenylbenzene for promoting effective π-π stacking as well as the hexyloxy flexible group for enhancing solubility in organic solvent, have been synthesized as HTM of perovskite-sensitized solar cells. A HTM with 1,3,5-trisphenylbenzene core, coded as SGT-411, exhibited the highest charge conductivity caused by its intrinsic property to form crystallized structure. The perovskite-sensitized solar cells with SGT-411 exhibited the highest PCE of 13.00%, which is 94% of that of the device derived from spiro-OMeTAD (13.76%). Time-resolved photoluminescence spectra indicate that SGT-411 shows the shortest decay time constant, which is in agreement with the trends of conductivity data, indicating it having fastest charge regeneration. In this regard, a carbazole-based HTM with star-shaped chemical structure is considered to be a promising candidate HTM.

6.
Chem Commun (Camb) ; 50(91): 14161-3, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25278427

RESUMEN

Three novel carbazole-based molecules have been synthesized and successfully applied as hole-transporting materials (HTMs) of CH3NH3PbI3-based perovskite solar cells. In particular, the perovskite cell with SGT-405, having a three-arm-type structure, exhibited a remarkable photovoltaic conversion efficiency (PCE) of 14.79%.

7.
Adv Mater ; 26(19): 3055-62, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24677174

RESUMEN

Challenging precious Pt-based electrocatalysts for dye-sensitized solar cells (DSSCs), graphene nanoplatelets that are N-doped at the edges (NGnPs) are prepared via simply ball-milling graphite in the presence of nitrogen gas. DSSCs based on specific nanoplatelets designated "NGnP5" display superior photovoltaic performance (power conversion efficiency, 10.27%) compared to that of conventional Pt-based devices (9.96%). More importantly, the NGnP counter electrode exhibits outstanding electrochemical stability and electrocatalytic activity with a cobalt-complex redox couple.

8.
ChemSusChem ; 6(11): 2069-73, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24000233

RESUMEN

In stereo, where available: A new approach towards dye-sensitized solar cells is based on dianchoring structural motifs with two donors, two acceptors, and a core bridge donor as a spacer. Their high molar absorption coefficients result in favorable light-harvesting efficiencies for DSSCs based on these dyes. A high conversion efficiency of 4.90 % is achieved when using dye DC4, containing a core bridge carbazole unit, with a multifunctional coadsorbent.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Compuestos de Espiro/química , Luz Solar , Diseño de Fármacos
9.
ChemSusChem ; 6(8): 1425-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23788486

RESUMEN

An efficient organic sensitizer (JK-306) featuring a planar indeno[1,2-b]thiophene as the π-linker of a bridging unit for dye-sensitized solar cells (DSSCs) was synthesized. The sensitizer had a strong molar absorption coefficient and a red-shifted absorption band compared with JK-305, which resulted in a significant increase in the short-circuit photocurrent density. We incorporated a highly congested bulky amino group into the 2',4'-dihexyloxybiphenyl-4-yl moiety, an electron donor, to diminish the charge recombination and to prevent aggregation of the sensitizer. Under standard AM 1.5G solar conditions, JK-306-sensitized cells in the presence of co-adsorbents chenodeoxycholic acid (CDCA) and 4-[bis(9,9-dimethyl-9H-fluoren-2-yl)amino]benzoic acid (HC-A), which afforded an overall conversion efficiency of 8.37% and 8.52%, respectively. Upon changing the I(-) /I3 (-) electrolyte to the Co(II) /Co(III) redox couple, the cell gave rise to a significantly improved conversion efficiency of 10.02% with the multifunctional HC-A, which is one of the highest values reported for DSSCs with a cobalt-based electrolyte. Furthermore, the JK-306-based solar cell with a polymer gel electrolyte revealed a high conversion efficiency of 7.61%, which is one of the highest values for cells based on organic sensitizers.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Indenos/química , Energía Solar , Tiofenos/química , Cianoacrilatos/química , Espectroscopía Dieléctrica , Transporte de Electrón , Modelos Moleculares , Conformación Molecular
10.
ACS Nano ; 7(6): 5243-50, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23656316

RESUMEN

Highly efficient counter electrodes (CEs) for dye-sensitized solar cells (DSSCs) were developed using thin films of scalable and high-quality, nitrogen-doped graphene nanoplatelets (NGnP), which was synthesized by a simple two-step reaction sequence. The resultant NGnP was deposited on fluorine-doped SnO2 (FTO)/glass substrates by using electrospray (e-spray) coating, and their electrocatalytic activities were systematically evaluated for Co(bpy)3(3+/2+) redox couple in DSSCs with an organic sensitizer. The e-sprayed NGnP thin films exhibited outstanding performances as CEs for DSSCs. The optimized NGnP electrode showed better electrochemical stability under prolonged cycling potential, and its Rct at the interface of the CE/electrolyte decreased down to 1.73 Ω cm(2), a value much lower than that of the Pt electrode (3.15 Ω cm(2)). The DSSC with the optimized NGnP-CE had a higher fill factor (FF, 74.2%) and a cell efficiency (9.05%), whereas those of the DSSC using Pt-CE were only 70.6% and 8.43%, respectively. To the best of our knowledge, the extraordinarily better current-voltage characteristics of the DSSC-NGnP outperforming the DSSC-Pt for the Co(bpy)3(3+/2+) redox couple (in paticular, FF and short circuit current, Jsc) is highlighted for the first time.

11.
Sci Rep ; 3: 2260, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23877200

RESUMEN

Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C--C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.


Asunto(s)
Fuentes de Energía Bioeléctrica , Grafito/química , Nanoestructuras/química , Fijación del Nitrógeno , Electroquímica , Modelos Moleculares , Conformación Molecular , Nanoestructuras/ultraestructura , Espectroscopía de Fotoelectrones
12.
Chem Commun (Camb) ; 48(75): 9349-51, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22499080

RESUMEN

A high solar-to-electricity conversion efficiency of 7.22% was achieved with a short circuit current (J(sc)) of 15.30 mA cm(-2), an open circuit voltage (V(oc)) of 669 mV and a fill factor (FF) of 0.71 for the 2Flu-ZnP-CN-COOH dye with a multi-functional co-adsorbent, under 100 mW cm(-2) AM 1.5 G simulated light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA