Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 191(4): 2276-2287, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708195

RESUMEN

A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3',5' epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Polen , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad/genética , Señalización del Calcio/genética , Expresión Génica , Polen/enzimología , Polen/genética , Tubo Polínico/enzimología , Tubo Polínico/genética , Regiones Promotoras Genéticas/genética
2.
New Phytol ; 240(5): 1830-1847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743731

RESUMEN

Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Catión , Antiportadores/genética , Antiportadores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Señalización del Calcio , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis
3.
Plant Physiol ; 187(4): 2262-2278, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34890456

RESUMEN

Under anaerobic stress, Arabidopsis thaliana induces the expression of a collection of core hypoxia genes that encode proteins for an adaptive response. Among these genes is NIP2;1, which encodes a member of the "Nodulin 26-like Intrinsic Protein" (NIP) subgroup of the aquaporin superfamily of membrane channel proteins. NIP2;1 expression is limited to the "anoxia core" region of the root stele under normal growth conditions, but shows substantial induction (up to 1,000-fold by 2-4 h of hypoxia) by low oxygen stress, and accumulation in all root tissues. During hypoxia, NIP2;1-GFP accumulates predominantly on the plasma membrane by 2 h, is distributed between the plasma and internal membranes during sustained hypoxia, and remains elevated in root tissues through 4 h of reoxygenation recovery. In response to hypoxia challenge, T-DNA insertion mutant nip2;1 plants exhibit elevated lactic acid within root tissues, reduced efflux of lactic acid, and reduced acidification of the external medium compared to wild-type plants. Previous biochemical evidence demonstrates that NIP2;1 has lactic acid channel activity, and our work supports the hypothesis that NIP2;1 prevents lactic acid toxicity by facilitating release of cellular lactic acid from the cytosol to the apoplast, supporting eventual efflux to the rhizosphere. In evidence, nip2;1 plants demonstrate poorer survival during argon-induced hypoxia stress. Expressions of the ethanolic fermentation transcript Alcohol Dehydrogenase1 and the core hypoxia-induced transcript Alanine Aminotransferase1 are elevated in nip2;1, and expression of the Glycolate Oxidase3 transcript is reduced, suggesting NIP2;1 lactic acid efflux regulates other pyruvate and lactate metabolism pathways.


Asunto(s)
Adaptación Fisiológica/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hipoxia/metabolismo , Ácido Láctico/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hipoxia/genética , Plantas Modificadas Genéticamente
4.
Plant Physiol ; 185(4): 1966-1985, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33575795

RESUMEN

Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Retículo Endoplásmico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Desarrollo de la Planta , Polen/genética
5.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30266747

RESUMEN

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Bóricos/metabolismo , Gametogénesis en la Planta/genética , Polen/genética , Acuaporinas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Boro/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Filogenia , Polen/crecimiento & desarrollo , Polen/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión
6.
Am J Bot ; 106(1): 123-136, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30644539

RESUMEN

PREMISE OF THE STUDY: Spaceflight provides a unique environment in which to dissect plant stress response behaviors and to reveal potentially novel pathways triggered in space. We therefore analyzed the transcriptomes of Arabidopsis thaliana plants grown on board the International Space Station to find the molecular fingerprints of these space-related response networks. METHODS: Four ecotypes (Col-0, Ws-2, Ler-0 and Cvi-0) were grown on orbit and then their patterns of transcript abundance compared to ground-based controls using RNA sequencing. KEY RESULTS: Transcripts from heat-shock proteins were upregulated in all ecotypes in spaceflight, whereas peroxidase transcripts were downregulated. Among the shared and ecotype-specific changes, gene classes related to oxidative stress and hypoxia were detected. These spaceflight transcriptional response signatures could be partly mimicked on Earth by a low oxygen environment and more fully by oxidative stress (H2 O2 ) treatments. CONCLUSIONS: These results suggest that the spaceflight environment is associated with oxidative stress potentially triggered, in part, by hypoxic response. Further, a shared spaceflight response may be through the induction of molecular chaperones (such as heat shock proteins) that help protect cellular machinery from the effects of oxidative damage. In addition, this research emphasizes the importance of considering the effects of natural variation when designing and interpreting changes associated with spaceflight experiments.


Asunto(s)
Arabidopsis/metabolismo , Estrés Oxidativo , Vuelo Espacial , Transcriptoma , Ecotipo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Peroxidasa/metabolismo
7.
Physiol Plant ; 165(2): 356-368, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30411793

RESUMEN

While the accumulation of reactive oxygen species (ROS) through spontaneous generation or as the by-products of aerobic metabolism can be toxic to plants, recent findings demonstrate that ROS act as signaling molecules that play a critical role in adapting to various stress conditions. Tight regulation of ROS homeostasis is required to adapt to stress and survive, yet in vivo spatiotemporal information of ROS dynamics are still largely undefined. In order to understand the dynamics of ROS changes and their biological function in adapting to stresses, two quantitative ROS transcription-based bioreporters were developed. These reporters use ROS-responsive promoters from RBOHD or ZAT12 to drive green fluorescent protein (GFP) expression. The resulting GFP expression is compared to a constitutively expressed mCherry that is contained on the same cassette with the ROS-responsive promoter: This allows for the generation of ratiometric images comparing ROS changes (GFP) to the constitutively expressed mCherry. Both reporters were used to assess ROS levels to oxidative stress, salt stress, and the pathogen defense elicitor flg22. These bioreporters showed increases in the ratio values of GFP to mCherry signals between 10 and 30 min poststress application. Such stress-associated ROS signals correlated with the induction of abiotic/biotic stress responsive markers such as RbohD, ZAT12, SOS2 and PR5 suggesting these ROS bioreporters provide a robust indicator of increased ROS related to stress responses. Based upon the spatiotemporal response patterns of signal increase, ZAT12 promoter-dependent ROS (Zat12p-ROS) bioreporter appears to be suitable for cellular mapping of ROS changes in response to abiotic and biotic stresses.


Asunto(s)
Arabidopsis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Salino , Plantones/fisiología
9.
Plant J ; 90(4): 698-707, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28112437

RESUMEN

Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H+ remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.


Asunto(s)
Calcio/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Comunicación Celular/genética , Comunicación Celular/fisiología , Raíces de Plantas/metabolismo , Plasmodesmos/metabolismo
10.
Oecologia ; 186(3): 703-710, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29340758

RESUMEN

Although induced defenses are widespread in plants, the degree to which plants respond to herbivore kairomones (incidental chemicals that herbivores produce independent of herbivory), the costs and benefits of responding to cues of herbivory risk, and the ecological consequences of induced defenses remain unclear. We demonstrate that undamaged tomatoes, Solanum lycopersicum, induce defenses in response to a kairomone (locomotion mucus) of snail herbivores (Helix aspersa). Induced defense had significant costs and benefits for plants: plants exposed to snail mucus or a standard defense elicitor (methyl jasmonate, MeJA) exhibited slower growth, but also experienced less herbivory by an insect herbivore (Spodoptera exigua). We also find that kairomones from molluscan herbivores lead to deleterious effects on insect herbivores mediated through changes in plant defense, i.e., mucus-induced defenses of Solanum lycopersicum-reduced growth of S. exigua. These results suggest that incidental cues of widespread generalist herbivores might be a mechanism creating variation in plant growth, plant defense, and biotic interactions.


Asunto(s)
Herbivoria , Solanum lycopersicum , Animales , Señales (Psicología) , Desarrollo de la Planta , Spodoptera
11.
Plant Physiol ; 171(3): 1771-84, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27261066

RESUMEN

Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Canales de Calcio/metabolismo , Señalización del Calcio , NADPH Oxidasas/metabolismo , Tolerancia a la Sal/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Compuestos de Bifenilo/farmacología , Canales de Calcio/genética , Técnicas de Inactivación de Genes , Modelos Biológicos , Imagen Molecular/métodos , NADPH Oxidasas/genética , Compuestos Onio/farmacología , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina , Estrés Fisiológico
12.
Proc Natl Acad Sci U S A ; 111(17): 6497-502, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24706854

RESUMEN

Their sessile lifestyle means that plants have to be exquisitely sensitive to their environment, integrating many signals to appropriate developmental and physiological responses. Stimuli ranging from wounding and pathogen attack to the distribution of water and nutrients in the soil are frequently presented in a localized manner but responses are often elicited throughout the plant. Such systemic signaling is thought to operate through the redistribution of a host of chemical regulators including peptides, RNAs, ions, metabolites, and hormones. However, there are hints of a much more rapid communication network that has been proposed to involve signals ranging from action and system potentials to reactive oxygen species. We now show that plants also possess a rapid stress signaling system based on Ca(2+) waves that propagate through the plant at rates of up to ∼ 400 µm/s. In the case of local salt stress to the Arabidopsis thaliana root, Ca(2+) wave propagation is channeled through the cortex and endodermal cell layers and this movement is dependent on the vacuolar ion channel TPC1. We also provide evidence that the Ca(2+) wave/TPC1 system likely elicits systemic molecular responses in target organs and may contribute to whole-plant stress tolerance. These results suggest that, although plants do not have a nervous system, they do possess a sensory network that uses ion fluxes moving through defined cell types to rapidly transmit information between distant sites within the organism.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio , Señalización del Calcio/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Meristema/efectos de los fármacos , Meristema/metabolismo , Mutación/genética , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Estrés Fisiológico/genética , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
13.
Front Plant Sci ; 15: 1339559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756966

RESUMEN

Iron- and reactive oxygen species (ROS)-dependent ferroptosis occurs in plant cells. Ca2+ acts as a conserved key mediator to control plant immune responses. Here, we report a novel role of cytoplasmic Ca2+ influx regulating ferroptotic cell death in rice immunity using pharmacological approaches. High Ca2+ influx triggered iron-dependent ROS accumulation, lipid peroxidation, and subsequent hypersensitive response (HR) cell death in rice (Oryza sativa). During Magnaporthe oryzae infection, 14 different Ca2+ influx regulators altered Ca2+, ROS and Fe2+ accumulation, glutathione reductase (GR) expression, glutathione (GSH) depletion and lipid peroxidation, leading to ferroptotic cell death in rice. High Ca2+ levels inhibited the reduction of glutathione isulphide (GSSG) to GSH in vitro. Ca2+ chelation by ethylene glycol-bis (2-aminoethylether)-N, N, N', N'-tetra-acetic acid (EGTA) suppressed apoplastic Ca2+ influx in rice leaf sheaths during infection. Blocking apoplastic Ca2+ influx into the cytoplasm by Ca2+ chelation effectively suppressed Ca2+-mediated iron-dependent ROS accumulation and ferroptotic cell death. By contrast, acibenzolar-S-methyl (ASM), a plant defense activator, significantly enhanced Ca2+ influx, as well as ROS and iron accumulation to trigger ferroptotic cell death in rice. The cytoplasmic Ca2+ influx through calcium-permeable cation channels, including the putative resistosomes, could mediate iron- and ROS-dependent ferroptotic cell death under reduced GR expression levels in rice immune responses.

14.
Plant J ; 70(1): 118-28, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22449047

RESUMEN

Many plant response systems are linked to complex dynamics in signaling molecules such as Ca(2+) and reactive oxygen species (ROS) and to pH. Regulatory changes in these molecules can occur in the timeframe of seconds and are often limited to specific subcellular locales. Thus, to understand how Ca(2+) , ROS and pH form part of plants' regulatory networks, it is essential to capture their rapid dynamics with resolutions that span the whole plant to subcellular dimensions. Defining the spatio-temporal signaling 'signatures' of these regulators at high resolution has now been greatly facilitated by the generation of plants expressing a range of GFP-based bioprobes. For Ca(2+) and pH, probes such as the yellow cameleon Ca(2+) sensors (principally YC2.1 and 3.6) or the pHluorin and H148D pH sensors provide a robust suite of tools to image changes in these ions. For ROS, the tools are much more limited, with the GFP-based H(2) O(2) sensor Hyper representing a significant advance for the field. However, with this probe, its marked pH sensitivity provides a key challenge to interpretation without using appropriate controls to test for potentially coupled pH-dependent changes. Most of these Ca(2+) -, ROS- and pH-imaging biosensors are compatible with the standard configurations of confocal microscopes available to many researchers. These probes therefore represent a readily accessible toolkit to monitor cellular signaling. Their use does require appreciation of a minimal set of controls but these are largely related to ensuring that neither the probe itself nor the imaging conditions used perturb the biology of the plant under study.


Asunto(s)
Técnicas Biosensibles/métodos , Calcio/análisis , Proteínas Fluorescentes Verdes , Plantas/metabolismo , Especies Reactivas de Oxígeno/análisis , Señalización del Calcio , Pared Celular/química , Citosol/química , Colorantes Fluorescentes , Peróxido de Hidrógeno/análisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción
15.
Biochim Biophys Acta ; 1818(3): 627-35, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22166843

RESUMEN

Annotation of the recently sequenced genome of the pea aphid (Acyrthosiphon pisum) identified a gene ApAQP2 (ACYPI009194, Gene ID: 100168499) with homology to the Major Intrinsic Protein/aquaporin superfamily of membrane channel proteins. Phylogenetic analysis suggests that ApAQP2 is a member of an insect-specific clade of this superfamily. Homology model structures of ApAQP2 showed a novel array of amino acids comprising the substrate selectivity-determining "aromatic/arginine" region of the putative transport pore. Subsequent characterization of the transport properties of ApAQP2 upon expression in Xenopus oocytes supports an unusual substrate selectivity profile. Water permeability analyses show that the ApAQP2 protein exhibits a robust mercury-insensitive aquaporin activity. However unlike the water-specific ApAQP1 protein, ApAQP2 forms a multifunctional transport channel that shows a wide permeability profile to a range of linear polyols, including the potentially biologically relevant substrates glycerol, mannitol and sorbitol. Gene expression analysis indicates that ApAQP2 is highly expressed in the insect bacteriocytes (cells bearing the symbiotic bacteria Buchnera) and the fat body. Overall the results demonstrate that ApAQP2 is a novel insect aquaglyceroporin which may be involved in water and polyol transport in support of the Buchnera symbiosis and aphid osmoregulation.


Asunto(s)
Áfidos/metabolismo , Acuaporina 2/metabolismo , Proteínas de Insectos/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Animales , Áfidos/genética , Áfidos/microbiología , Acuaporina 1/genética , Acuaporina 1/metabolismo , Acuaporina 2/genética , Transporte Biológico/fisiología , Buchnera/fisiología , Permeabilidad de la Membrana Celular , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Simbiosis/fisiología , Xenopus laevis
16.
Sci Total Environ ; 851(Pt 1): 158101, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987220

RESUMEN

Atmospheric elemental mercury (Hg(0)) enters plant stomata, becomes oxidized, and is then transferred to annual growth rings providing an archive of air Hg(0) concentrations. To better understand the processes of Hg accumulation and translocation, the foliage of quaking aspen and Austrian pine were exposed to Hg(0), and methylmercury (MeHg) or Me198Hg via roots, in controlled exposures during the summer. Isotopic measurements demonstrated, in a laboratory setting, that the natural mass-dependent fractionation observed was the same as that measured in field studies, with the lighter isotopes being preferentially taken up by the leaves. Hg was measured in plant tissues across seasons. Aspen trees moved Hg into new growth immediately after exposure, resorbed Hg in the fall, and then distributed Hg to new growth tissues in the spring. Austrian pine did not reallocate Hg. Mercury measured in aspen leaf fractions of trees exposed to Hg(0) demonstrated that 85 % of Hg was in the cell wall. It was also found that redox-active molecules, such as H2O2, could potentiate the release of cell wall-bound Hg from aspen leaves, providing a potential mechanism for remobilization. Regardless of the mechanism, the ability of aspen to reallocate Hg to new tissues indicates that Hg distribution in tree rings from aspen do not provide a reliable record of yearly changes in atmospheric Hg(0).


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Pinus , Monitoreo del Ambiente , Peróxido de Hidrógeno , Isótopos , Mercurio/análisis , Isótopos de Mercurio
17.
Biochemistry ; 50(31): 6633-41, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21710975

RESUMEN

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respectively, that participate in the transport of the critical cell wall nutrient boric acid. Modeling of the protein encoded by the AtNIP7;1 gene shows that it is a third member of the NIP II pore subclass in Arabidopsis. However, unlike AtNIP5;1 and AtNIP6;1 proteins, which form constitutive boric acid channels, AtNIP7;1 forms a channel with an extremely low intrinsic boric acid transport activity. Molecular modeling and molecular dynamics simulations of AtNIP7;1 suggest that a conserved tyrosine residue (Tyr81) located in transmembrane helix 2 adjacent to the aromatic arginine (ar/R) pore selectivity region stabilizes a closed pore conformation through interaction with the canonical Arg220 in ar/R region. Substitution of Tyr81 with a Cys residue, characteristic of established NIP boric acid channels, results in opening of the AtNIP7;1 pore that acquires a robust, transport activity for boric acid as well as other NIP II test solutes (glycerol and urea). Substitution of a Phe for Tyr81 also opens the channel, supporting the prediction from MD simulations that hydrogen bond interaction between the Tyr81 phenol group and the ar/R Arg may contribute to the stabilization of a closed pore state. Expression analyses show that AtNIP7;1 is selectively expressed in developing anther tissues of young floral buds of A. thaliana, principally in developing pollen grains of stage 9-11 anthers. Because boric acid is both an essential nutrient as well as a toxic compound at high concentrations, it is proposed that Tyr81 modulates transport and may provide an additional level of regulation for this transporter in male gametophyte development.


Asunto(s)
Acuaporinas/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Ácidos Bóricos/química , Proteínas Portadoras/química , Regulación de la Expresión Génica de las Plantas , Polen/química , Tirosina/química , Sustitución de Aminoácidos/genética , Acuaporinas/biosíntesis , Acuaporinas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Ácidos Bóricos/metabolismo , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Secuencia Conservada , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Familia de Multigenes , Especificidad de Órganos/genética , Fenilalanina/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Estructura Secundaria de Proteína/genética , Tirosina/genética
18.
Plants (Basel) ; 10(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671904

RESUMEN

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants' growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.

19.
Front Plant Sci ; 12: 777975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975960

RESUMEN

Land plants evolved to quickly sense and adapt to temperature changes, such as hot days and cold nights. Given that calcium (Ca2+) signaling networks are implicated in most abiotic stress responses, heat-triggered changes in cytosolic Ca2+ were investigated in Arabidopsis leaves and pollen. Plants were engineered with a reporter called CGf, a ratiometric, genetically encoded Ca2+ reporter with an mCherry reference domain fused to an intensiometric Ca2+ reporter GCaMP6f. Relative changes in [Ca2+]cyt were estimated based on CGf's apparent K D around 220 nM. The ratiometric output provided an opportunity to compare Ca2+ dynamics between different tissues, cell types, or subcellular locations. In leaves, CGf detected heat-triggered cytosolic Ca2+ signals, comprised of three different signatures showing similarly rapid rates of Ca2+ influx followed by differing rates of efflux (50% durations ranging from 5 to 19 min). These heat-triggered Ca2+ signals were approximately 1.5-fold greater in magnitude than blue light-triggered signals in the same leaves. In contrast, growing pollen tubes showed two different heat-triggered responses. Exposure to heat caused tip-focused steady growth [Ca2+]cyt oscillations to shift to a pattern characteristic of a growth arrest (22%), or an almost undetectable [Ca2+]cyt (78%). Together, these contrasting examples of heat-triggered Ca2+ responses in leaves and pollen highlight the diversity of Ca2+ signals in plants, inviting speculations about their differing kinetic features and biological functions.

20.
Front Plant Sci ; 10: 101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804970

RESUMEN

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C3 (or C4) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C4 metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction. Here, we isolated and analyzed the subcellular localizations of 13 enzymes and regulatory proteins of the C4 metabolism cycle of CAM from the common ice plant in stably transformed Arabidopsis thaliana. Six components of the carboxylation module were analyzed including beta-carbonic anhydrase (McBCA2), phosphoenolpyruvate carboxylase (McPEPC1), phosphoenolpyruvate carboxylase kinase (McPPCK1), NAD-dependent malate dehydrogenase (McNAD-MDH1, McNAD-MDH2), and NADP-dependent malate dehydrogenase (McNADP-MDH1). In addition, seven components of the decarboxylation module were analyzed including NAD-dependent malic enzyme (McNAD-ME1, McNAD-ME2), NADP-dependent malic enzyme (McNADP-ME1, NADP-ME2), pyruvate, orthophosphate dikinase (McPPDK), pyruvate, orthophosphate dikinase-regulatory protein (McPPDK-RP), and phosphoenolpyruvate carboxykinase (McPEPCK). Ectopic overexpression of most C4-metabolism cycle components resulted in increased rosette diameter, leaf area, and leaf fresh weight of A. thaliana except for McNADP-MDH1, McPPDK-RP, and McPEPCK. Overexpression of most carboxylation module components resulted in increased stomatal conductance and dawn/dusk titratable acidity (TA) as an indirect measure of organic acid (mainly malate) accumulation in A. thaliana. In contrast, overexpression of the decarboxylating malic enzymes reduced stomatal conductance and TA. This comprehensive study provides fundamental insights into the relative functional contributions of each of the individual components of the core C4-metabolism cycle of CAM and represents a critical first step in laying the foundation for CAM Biodesign.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA