Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Cancer ; 24(1): 502, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643078

RESUMEN

BACKGROUND: Paclitaxel is commonly used as a second-line therapy for advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select an appropriate regimen is critical for vulnerable patients with AGC progressing after first-line chemotherapy. However, no predictive biomarkers exist to identify patients with AGC who would benefit from paclitaxel-based chemotherapy. METHODS: This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 as part of the K-MASTER project, a nationwide government-funded precision medicine initiative. The data included clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy), and genomic factors (pathogenic or likely pathogenic variants). Data were randomly divided into training and validation sets (0.8:0.2). Four machine learning (ML) methods, namely random forest (RF), logistic regression (LR), artificial neural network (ANN), and ANN with genetic embedding (ANN with GE), were used to develop the prediction model and validated in the validation sets. RESULTS: The median patient age was 64 years (range 25-91), and 65.6% of those were male. A total of 288 patients were divided into the training (n = 230) and validation (n = 58) sets. No significant differences existed in baseline characteristics between the training and validation sets. In the training set, the areas under the ROC curves (AUROC) for predicting better progression-free survival (PFS) with paclitaxel-based chemotherapy were 0.499, 0.679, 0.618, and 0.732 in the RF, LR, ANN, and ANN with GE models, respectively. The ANN with the GE model that achieved the highest AUROC recorded accuracy, sensitivity, specificity, and F1-score performance of 0.458, 0.912, 0.724, and 0.579, respectively. In the validation set, the ANN with GE model predicted that paclitaxel-sensitive patients had significantly longer PFS (median PFS 7.59 vs. 2.07 months, P = 0.020) and overall survival (OS) (median OS 14.70 vs. 7.50 months, P = 0.008). The LR model predicted that paclitaxel-sensitive patients showed a trend for longer PFS (median PFS 6.48 vs. 2.33 months, P = 0.078) and OS (median OS 12.20 vs. 8.61 months, P = 0.099). CONCLUSIONS: These ML models, integrated with clinical and genomic factors, offer the possibility to help identify patients with AGC who may benefit from paclitaxel chemotherapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Paclitaxel/uso terapéutico , Trastuzumab/uso terapéutico , Supervivencia sin Progresión , Genómica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
Bioinformatics ; 38(20): 4837-4839, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053172

RESUMEN

In biomedical natural language processing, named entity recognition (NER) and named entity normalization (NEN) are key tasks that enable the automatic extraction of biomedical entities (e.g. diseases and drugs) from the ever-growing biomedical literature. In this article, we present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by employing a multi-task NER model and neural network-based NEN models to achieve much faster and more accurate inference. We hope that our tool can help annotate large-scale biomedical texts for various tasks such as biomedical knowledge graph construction. AVAILABILITY AND IMPLEMENTATION: Web service of BERN2 is publicly available at http://bern2.korea.ac.kr. We also provide local installation of BERN2 at https://github.com/dmis-lab/BERN2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Neurales de la Computación , Programas Informáticos , Procesamiento de Lenguaje Natural
3.
Bioinformatics ; 35(24): 5249-5256, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31116384

RESUMEN

MOTIVATION: Traditional drug discovery approaches identify a target for a disease and find a compound that binds to the target. In this approach, structures of compounds are considered as the most important features because it is assumed that similar structures will bind to the same target. Therefore, structural analogs of the drugs that bind to the target are selected as drug candidates. However, even though compounds are not structural analogs, they may achieve the desired response. A new drug discovery method based on drug response, which can complement the structure-based methods, is needed. RESULTS: We implemented Siamese neural networks called ReSimNet that take as input two chemical compounds and predicts the CMap score of the two compounds, which we use to measure the transcriptional response similarity of the two compounds. ReSimNet learns the embedding vector of a chemical compound in a transcriptional response space. ReSimNet is trained to minimize the difference between the cosine similarity of the embedding vectors of the two compounds and the CMap score of the two compounds. ReSimNet can find pairs of compounds that are similar in response even though they may have dissimilar structures. In our quantitative evaluation, ReSimNet outperformed the baseline machine learning models. The ReSimNet ensemble model achieves a Pearson correlation of 0.518 and a precision@1% of 0.989. In addition, in the qualitative analysis, we tested ReSimNet on the ZINC15 database and showed that ReSimNet successfully identifies chemical compounds that are relevant to a prototype drug whose mechanism of action is known. AVAILABILITY AND IMPLEMENTATION: The source code and the pre-trained weights of ReSimNet are available at https://github.com/dmis-lab/ReSimNet. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Neurales de la Computación , Programas Informáticos , Descubrimiento de Drogas , Aprendizaje Automático
4.
BMC Bioinformatics ; 19(1): 21, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29368597

RESUMEN

BACKGROUND: Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. RESULTS: Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. CONCLUSION: We believe that our computational methods described in this research could be used as an important tool in identifying molecular biomarkers that predict drug responses in cancer patients. We also built a database of these mutation-gene-drug relations that were extracted from all the PubMed abstracts. We believe that our database can prove to be a valuable resource for precision medicine researchers.


Asunto(s)
Resistencia a Antineoplásicos/genética , Motor de Búsqueda , Antineoplásicos/uso terapéutico , Bases de Datos Factuales , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Redes Neurales de la Computación , Medicina de Precisión
5.
Bioinformatics ; 32(18): 2886-8, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27485446

RESUMEN

UNLABELLED: We introduce HiPub, a seamless Chrome browser plug-in that automatically recognizes, annotates and translates biomedical entities from texts into networks for knowledge discovery. Using a combination of two different named-entity recognition resources, HiPub can recognize genes, proteins, diseases, drugs, mutations and cell lines in texts, and achieve high precision and recall. HiPub extracts biomedical entity-relationships from texts to construct context-specific networks, and integrates existing network data from external databases for knowledge discovery. It allows users to add additional entities from related articles, as well as user-defined entities for discovering new and unexpected entity-relationships. HiPub provides functional enrichment analysis on the biomedical entity network, and link-outs to external resources to assist users in learning new entities and relations. AVAILABILITY AND IMPLEMENTATION: HiPub and detailed user guide are available at http://hipub.korea.ac.kr CONTACT: kangj@korea.ac.kr, aikchoon.tan@ucdenver.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Curaduría de Datos , Bases de Datos Factuales , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Biología Computacional/métodos , Genes , Humanos , Preparaciones Farmacéuticas , Proteínas , PubMed , Motor de Búsqueda
6.
Plant Pathol J ; 39(1): 75-87, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36760051

RESUMEN

The pine wood nematode (PWN), Bursaphelenchus xylophilus is a well-known devastating pathogen of economic importance in the Republic of Korea and other countries. In the Republic of Korea, trunk injection of nematicides is the preferred method of control. In this study, the efficacy of 16 locally produced formulations of emamectin benzoate against the PWN are compared through determining their sublethal toxicities and reproduction inhibition potentials. Nematodes were treated with varying concentrations of the tested chemicals in multi-well culture plates, and rates of paralysis and mortality were determined after 24 h. Reproduction inhibition potential was tested by inoculating pre-treated nematodes onto Botrytis cinerea, and in pine twig cuttings. Despite the uniformity in the concentration of the active ingredient, efficacy was contrastingly different among formulations. The formulations evidently conformed to three distinct groups based on similarities in sublethal activity (group 1: LC95 of 0.00768-0.01443 mg/ml; group 2: LC95 of 0.03202-0.07236 mg/ml, and group 3: LC95 of as high as 0.30643-0.40811 mg/ml). Nematode paralysis generally occurred at the application dose of 0.0134-0.1075 µg/ml, and there were significant differences in nematode paralysis rates among the products. Nematode reproduction was only evident at lower doses both on B. cinerea and pine twigs, albeit the variations among formulations. Group 1 formulations significantly reduced nematode reproduction even at a lower dose of 0.001075 µg/ml. The variations in efficacy might be attributed to differences in inert ingredients. Therefore, there is need to analyze the potential antagonistic effects of the large number of additives used in formulations.

7.
J Am Med Inform Assoc ; 31(1): 35-44, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37604111

RESUMEN

OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI.


Asunto(s)
Colaboración de las Masas , Medicina , Humanos , Inteligencia Artificial , Aprendizaje Automático , Algoritmos
8.
Front Oncol ; 11: 747250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868947

RESUMEN

Most electronic medical records, such as free-text radiological reports, are unstructured; however, the methodological approaches to analyzing these accumulating unstructured records are limited. This article proposes a deep-transfer-learning-based natural language processing model that analyzes serial magnetic resonance imaging reports of rectal cancer patients and predicts their overall survival. To evaluate the model, a retrospective cohort study of 4,338 rectal cancer patients was conducted. The experimental results revealed that the proposed model utilizing pre-trained clinical linguistic knowledge could predict the overall survival of patients without any structured information and was superior to the carcinoembryonic antigen in predicting survival. The deep-transfer-learning model using free-text radiological reports can predict the survival of patients with rectal cancer, thereby increasing the utility of unstructured medical big data.

9.
Genes (Basel) ; 10(11)2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703457

RESUMEN

Treating patients with major depressive disorder is challenging because it takes several months for antidepressants prescribed for the patients to take effect. This limitation may result in increased risks and treatment costs. To address this limitation, an accurate antidepressant response prediction model is needed. Recently, several studies have proposed models that extract useful features such as neuroimaging biomarkers and genetic variants from patient data, and use them as predictors for predicting the antidepressant responses of patients. However, it is impossible to utilize all the different types of predictors when making a clinical decision on what drugs to prescribe for a patient. Although a machine learning-based antidepressant response prediction model has been proposed to overcome this problem, the model cannot find the most effective antidepressant for a patient. Based on a neural network, we propose an Antidepressant Response Prediction Network (ARPNet) model capturing high-dimensional patterns from useful features. Based on a literature survey and data-driven feature selection, we extract useful features from patient data, and use the features as predictors. In ARPNet, the patient representation layer captures patient features and the antidepressant prescription representation layer captures antidepressant features. Utilizing the patient and antidepressant prescription representation vectors, ARPNet predicts the degree of antidepressant response. The experimental evaluation results demonstrate that our proposed ARPNet model outperforms machine learning-based models in predicting antidepressant response. Moreover, we demonstrate the applicability of ARPNet in downstream applications in use case scenarios.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Redes Neurales de la Computación , Programas Informáticos , Resistencia a Medicamentos , Humanos , Resultado del Tratamiento
10.
JMIR Med Inform ; 6(1): e2, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305341

RESUMEN

BACKGROUND: With the development of artificial intelligence (AI) technology centered on deep-learning, the computer has evolved to a point where it can read a given text and answer a question based on the context of the text. Such a specific task is known as the task of machine comprehension. Existing machine comprehension tasks mostly use datasets of general texts, such as news articles or elementary school-level storybooks. However, no attempt has been made to determine whether an up-to-date deep learning-based machine comprehension model can also process scientific literature containing expert-level knowledge, especially in the biomedical domain. OBJECTIVE: This study aims to investigate whether a machine comprehension model can process biomedical articles as well as general texts. Since there is no dataset for the biomedical literature comprehension task, our work includes generating a large-scale question answering dataset using PubMed and manually evaluating the generated dataset. METHODS: We present an attention-based deep neural model tailored to the biomedical domain. To further enhance the performance of our model, we used a pretrained word vector and biomedical entity type embedding. We also developed an ensemble method of combining the results of several independent models to reduce the variance of the answers from the models. RESULTS: The experimental results showed that our proposed deep neural network model outperformed the baseline model by more than 7% on the new dataset. We also evaluated human performance on the new dataset. The human evaluation result showed that our deep neural model outperformed humans in comprehension by 22% on average. CONCLUSIONS: In this work, we introduced a new task of machine comprehension in the biomedical domain using a deep neural model. Since there was no large-scale dataset for training deep neural models in the biomedical domain, we created the new cloze-style datasets Biomedical Knowledge Comprehension Title (BMKC_T) and Biomedical Knowledge Comprehension Last Sentence (BMKC_LS) (together referred to as BioMedical Knowledge Comprehension) using the PubMed corpus. The experimental results showed that the performance of our model is much higher than that of humans. We observed that our model performed consistently better regardless of the degree of difficulty of a text, whereas humans have difficulty when performing biomedical literature comprehension tasks that require expert level knowledge.

11.
FEMS Microbiol Lett ; 239(2): 241-8, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15476972

RESUMEN

An entomopathogenic bacterium, Xenorhabdus nematophila, is known to have potent antibiotic activities to maintain monoxenic condition in its insect host for effective pathogenesis and ultimately for optimal development of its nematode symbiont, Steinernema carpocapsae. In this study we assess its antibacterial activity against plant-pathogenic bacteria and identify its unknown antibiotics. The bacterial culture broth had significant antibacterial activity that increased with development of the bacteria and reached its maximum at the stationary growth phase. The antibiotic activities were significant against five plant-pathogenic bacterial strains: Agrobacterium vitis, Pectobacterium carotovorum subsp. atrosepticum, P. carotovorum subsp. carotovorum, Pseudomonas syringae pv. tabaci, and Ralstonia solanacearum. The antibacterial factors were extracted with butanol and fractionated using column chromatography with the eluents of different hydrophobic intensities. Two active antibacterial subfractions were purified, and the higher active fraction was further fractionated and identified as a single compound of benzylideneacetone (trans-4-phenyl-3-buten-2-one). With heat stability, the synthetic compound showed equivalent antibiotic activity and spectrum to the purified compound. This study reports a new antibiotic compound synthesized by X. nematophila, which is a monoterpenoid compound and active against some Gram-negative bacteria.


Asunto(s)
Butanonas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Plantas/microbiología , Spodoptera/microbiología , Xenorhabdus/química , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Butanonas/aislamiento & purificación , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA