RESUMEN
Plasmodium parasites, causative agents of malaria, scavenge host nutrients to sustain their intracellular replication. Modulation of the host's nutritional status can potentially help control infection by limiting the parasite's access to nutrients, or by boosting the immune system. Here, we show that dietary supplementation of mice employing a combination of arginine (R) with two additional amino acids, lysine (K) and valine (V), termed RKV, significantly decreases Plasmodium liver infection. RKV supplementation results in the elimination of parasites at a late stage of their development in the liver. Our data employing genetic knockout mouse models and in vivo depletion of specific cell populations suggest that RKV supplementation boosts the host's overall innate immune response, and that parasite elimination is dependent on MyD88 signaling in immune cells. The immunostimulatory effect of RKV supplementation opens a potential role for dietary supplementation as an adjuvant for prophylaxis or immunization strategies against Plasmodium infection.
RESUMEN
The relevance of genetic factors in conferring protection to severe malaria has been demonstrated, as in the case of sickle cell trait and G6PD deficiency 1 . However, it remains unknown whether environmental components, such as dietary or metabolic variations, can contribute to the outcome of infection 2 . Here, we show that administration of a high-fat diet to mice for a period as short as 4 days impairs Plasmodium liver infection by over 90%. Plasmodium sporozoites can successfully invade and initiate replication but die inside hepatocytes, thereby are unable to cause severe disease. Transcriptional analyses combined with genetic and chemical approaches reveal that this impairment of infection is mediated by oxidative stress. We show that reactive oxygen species, probably spawned from fatty acid ß-oxidation, directly impact Plasmodium survival inside hepatocytes, and parasite load can be rescued by exogenous administration of the antioxidant N-acetylcysteine or the ß-oxidation inhibitor etomoxir. Together, these data reveal that acute and transient dietary alterations markedly impact the establishment of a Plasmodium infection and disease outcome.